- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the numerical value of $ P: Q $ where $ \mathrm{P}=\left(\frac{x^{m}}{x^{n}}\right)^{m+n-l} \times\left(\frac{x^{n}}{x^{l}}\right)^{n+l-m} \times\left(\frac{x^{l}}{x^{m}}\right)^{l+m-n} $ and$ \mathrm{Q}=\left(x^{1 /(a-b)}\right)^{1 /(a-c)} \times\left(x^{1 /(b-c)}\right)^{1 /(b-a)} \times\left(x^{1 /(c-a)}\right)^{1 /(c-b)} $
where $ a, b, c $ being all different.A. $ 1: 2 $
B. $ 2: 1 $
C. $ 1: 1 $
D. None of these
Given:
\( \mathrm{P}=\left(\frac{x^{m}}{x^{n}}\right)^{m+n-l} \times\left(\frac{x^{n}}{x^{l}}\right)^{n+l-m} \times\left(\frac{x^{l}}{x^{m}}\right)^{l+m-n} \) and
\( \mathrm{Q}=\left(x^{1 /(a-b)}\right)^{1 /(a-c)} \times\left(x^{1 /(b-c)}\right)^{1 /(b-a)} \times\left(x^{1 /(c-a)}\right)^{1 /(c-b)} \)
To do:
We have to find the numerical value of \( P: Q \).
Solution:
We know that,
$\frac{a^m}{a^n}=a^{m-n}$
$a^m \times a^n = a^ {m+n}$
Therefore,
$\mathrm{P}=(\frac{x^{m}}{x^{n}})^{m+n-l} \times(\frac{x^{n}}{x^{l}})^{n+l-m} \times(\frac{x^{l}}{x^{m}})^{l+m-n}$$=(x^{m-n})^{m+n-l} \times(x^{n-l})^{n+l-m} \times(x^{l-m})^{l+m-n}$
$=(x)^{(m-n)\times(m+n-l)} \times x^{(n-l)\times(n+l-m)} \times x^{(l-m)\times(l+m-n)}$
$=(x)^{(m^2+mn-ml-mn-n^2+nl)+(n^2+nl-mn-nl-l^2+ml)+(l^2+ml-nl-ml-m^2+mn)}$
$=(x)^{0}$
$=1$
$\mathrm{Q}=(x^{1 /(a-b)})^{1 /(a-c)} \times(x^{1 /(b-c)})^{1 /(b-a)} \times(x^{1 /(c-a)})^{1 /(c-b)}$
$=(x)^{1 /(a-b)\times1 /(a-c)} \times(x)^{1 /(b-c)\times1 /(b-a)} \times(x)^{1 /(c-a)\times1 /(c-b)}$
$=(x)^{\frac{1}{(a-b)\times(a-c)}+\frac{1}{(b-c)\times(b-a)}+\frac{1}{(c-a)\times(c-b)}}$
$=(x)^{\frac{(b-c)}{(a-b)\times(a-c)\times(b-c)}+\frac{(c-a)}{(b-c)\times(b-a)\times(c-a)}+\frac{(a-b)}{(c-a)\times(c-b)\times(a-b)}}$
$=(x)^{\frac{b-c+c-a+a-b}{(a-b)\times(a-c)\times(b-c)}}$
$=(x)^{\frac{0}{(a-b)\times(a-c)\times(b-c)}}$
$=x^0$
$=1$
Hence,
$P:Q=1:1$.
- Related Articles
- Show that:\( \frac{\left(a+\frac{1}{b}\right)^{m} \times\left(a-\frac{1}{b}\right)^{n}}{\left(b+\frac{1}{a}\right)^{m} \times\left(b-\frac{1}{a}\right)^{n}}=\left(\frac{a}{b}\right)^{m+n} \)
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{c} \times\left(\frac{x^{b}}{x^{c}}\right)^{a} \times\left(\frac{x^{c}}{x^{a}}\right)^{b}=1 \)
- Show that:\( \left(x^{\frac{1}{a-b}}\right)^{\frac{1}{a-c}}\left(x^{\frac{1}{b-c}}\right)^{\frac{1}{b-a}}\left(x^{\frac{1}{c-a}}\right)^{\frac{1}{c-b}}=1 \)
- If \( a=x^{m+n} y^{l}, b=x^{n+l} y^{m} \) and \( c=x^{l+m} y^{n} \), prove that \( a^{m-n} b^{n-1} c^{l-m}=1 . \)
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- Show that:\( \left(x^{a-b}\right)^{a+b}\left(x^{b-c}\right)^{b+c}\left(x^{c-a}\right)^{c+a}=1 \)
- Simplify: \( \left(\frac{2}{7} l-\frac{1}{4} m\right)\left(\frac{2}{7} l-\frac{1}{4} m\right) \).
- Show that:\( \left[\left\{\frac{x^{a(a-b)}}{x^{a(a+b)}}\right\} \p\left\{\frac{x^{b(b-a)}}{x^{b(b+a)}}\right\}\right]^{a+b}=1 \)
- Find $x$, if(i) \( \left(\frac{1}{4}\right)^{-4} \times\left(\frac{1}{4}\right)^{-8}=\left(\frac{1}{4}\right)^{-4 x} \)(ii) \( \left(\frac{-1}{2}\right)^{-19}\div\left(\frac{-1}{2}\right)^{8}=\left(\frac{-1}{2}\right)^{-2 x+1} \)(iii) \( \left(\frac{3}{2}\right)^{-3} \times\left(\frac{3}{2}\right)^{5}=\left(\frac{3}{2}\right)^{2 x+1} \)(iv) \( \left(\frac{2}{5}\right)^{-3} \times\left(\frac{2}{5}\right)^{15}=\left(\frac{2}{5}\right)^{2+3 x} \)(v) \( \left(\frac{5}{4}\right)^{-x}\div\left(\frac{5}{4}\right)^{-4}=\left(\frac{5}{4}\right)^{5} \)(vi) \( \left(\frac{8}{3}\right)^{2 x+1} \times\left(\frac{8}{3}\right)^{5}=\left(\frac{8}{3}\right)^{x+2} \)
- Find \( x \) if\( \left(\frac{1}{3}\right)^{-4} \times\left(\frac{1}{3}\right)^{-8}=\left(\frac{1}{3}\right)^{-4 x} \).
- Factorize:\( \left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+6 \)
- Simplify:\( \left(x^{4}+\frac{1}{x^{4}}\right)\left(x+\frac{1}{x}\right) \)
- Simplify each of the following.(a) \( \left(\frac{1}{2} a-b\right)\left(\frac{1}{2} a+b\right)\left(\frac{1}{4} a^{2}+b^{2}\right) \)(b) \( \left(\frac{p}{2}-\frac{q}{3}\right)\left(\frac{p}{2}+\frac{q}{3}\right)\left(\frac{p^{2}}{4}+\frac{q^{2}}{9}\right)\left(\frac{p^{4}}{16}+\frac{a^{4}}{81}\right) \)(c) \( \left(a^{2}+1-a\right)\left(a^{2}-1+a\right) \)(d) \( \left(4 b^{2}+2 b+1\right)\left(4 b^{2}-2 b-1\right) \)
- Show that:\( \left\{\left(x^{a-a^{-1}}\right)^{\frac{1}{a-1}}\right\}^{\frac{a}{a+1}}=x \)
