- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Show that:$ \left(x^{a-b}\right)^{a+b}\left(x^{b-c}\right)^{b+c}\left(x^{c-a}\right)^{c+a}=1 $
To do:
We have to show that \( \left(x^{a-b}\right)^{a+b}\left(x^{b-c}\right)^{b+c}\left(x^{c-a}\right)^{c+a}=1 \).
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
LHS $=(x^{a-b})^{a+b}(x^{b-c})^{b+c}(x^{c-a})^{c+a}$
$=x^{(a-b)(a+b)} \times x^{(b-c)(b+c)} \times x^{(c-a)(c+a)}$
$=x^{a^{2}-b^{2}} \times x^{b^{2}-c^{2}} \times x^{c^{2}-a^{2}}$
$=x^{a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2}}$
$=x^{0}$
$=1$
$=$ RHS
Hence proved.
- Related Articles
- Show that:\( \left[\left\{\frac{x^{a(a-b)}}{x^{a(a+b)}}\right\} \p\left\{\frac{x^{b(b-a)}}{x^{b(b+a)}}\right\}\right]^{a+b}=1 \)
- Find the numerical value of \( P: Q \) where \( \mathrm{P}=\left(\frac{x^{m}}{x^{n}}\right)^{m+n-l} \times\left(\frac{x^{n}}{x^{l}}\right)^{n+l-m} \times\left(\frac{x^{l}}{x^{m}}\right)^{l+m-n} \) and\( \mathrm{Q}=\left(x^{1 /(a-b)}\right)^{1 /(a-c)} \times\left(x^{1 /(b-c)}\right)^{1 /(b-a)} \times\left(x^{1 /(c-a)}\right)^{1 /(c-b)} \)where \( a, b, c \) being all different.A. \( 1: 2 \)B. \( 2: 1 \)C. \( 1: 1 \)D. None of these
- Find and correct the errors in the following.(a) \( (2 x+5)^{2}=4 x^{2}+25 \)(b) \( \left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=x^{2}-\frac{1}{4} \)(c) \( (5 a-b)^{2}=10 a^{2}-5 a b+b^{2} \)(d) \( (p-3)(p-7)=p^{2}+21 \)
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{c} \times\left(\frac{x^{b}}{x^{c}}\right)^{a} \times\left(\frac{x^{c}}{x^{a}}\right)^{b}=1 \)
- Show that:\( \left(x^{\frac{1}{a-b}}\right)^{\frac{1}{a-c}}\left(x^{\frac{1}{b-c}}\right)^{\frac{1}{b-a}}\left(x^{\frac{1}{c-a}}\right)^{\frac{1}{c-b}}=1 \)
- Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- Simplify:\( \left(\frac{x^{a+b}}{x^{c}}\right)^{a-b}\left(\frac{x^{b+c}}{x^{a}}\right)^{b-c}\left(\frac{x^{c+a}}{x^{b}}\right)^{c-a} \)
- Find the zero of the polynomial in each of the following cases:(i) \( p(x)=x+5 \)(ii) \( p(x)=x-5 \)(iii) \( p(x)=2 x+5 \)(iv) \( p(x)=3 x-2 \)(v) \( p(x)=3 x \)(vi) \( p(x)=a x, a ≠ 0 \)(vii) \( p(x)=c x+d, c ≠ 0, c, d \) are real numbers.
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- Simplify each of the following.(a) \( \left(\frac{1}{2} a-b\right)\left(\frac{1}{2} a+b\right)\left(\frac{1}{4} a^{2}+b^{2}\right) \)(b) \( \left(\frac{p}{2}-\frac{q}{3}\right)\left(\frac{p}{2}+\frac{q}{3}\right)\left(\frac{p^{2}}{4}+\frac{q^{2}}{9}\right)\left(\frac{p^{4}}{16}+\frac{a^{4}}{81}\right) \)(c) \( \left(a^{2}+1-a\right)\left(a^{2}-1+a\right) \)(d) \( \left(4 b^{2}+2 b+1\right)\left(4 b^{2}-2 b-1\right) \)
- Find \( p(0), p(1) \) and \( p(2) \) for each of the following polynomials:(i) \( p(y)=y^{2}-y+1 \)(ii) \( p(t)=2+t+2 t^{2}-t^{3} \)(iii) \( p(x)=x^{3} \)(iv) \( p(x)=(x-1)(x+1) \)
- Solve the following pairs of linear equations: (i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
- Verify whether the following are zeroes of the polynomial, indicated against them.(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- Show that:\( \left\{\left(x^{a-a^{-1}}\right)^{\frac{1}{a-1}}\right\}^{\frac{a}{a+1}}=x \)

Advertisements