Show that the points $ \left(1,-\frac{3}{2}\right),\left(-3,-\frac{7}{2}\right) $ and $ \left(-4,-\frac{3}{2}\right) $ are the vertices of a right angled triangle.


Given:

Given points are \( \left(1,-\frac{3}{2}\right),\left(-3,-\frac{7}{2}\right) \) and \( \left(-4,-\frac{3}{2}\right) \).

To do:

We have to prove that the points \( \left(1,-\frac{3}{2}\right),\left(-3,-\frac{7}{2}\right) \) and \( \left(-4,-\frac{3}{2}\right) \) are the vertices of a right-angled triangle.

Solution:

Let the vertices of a \( \Delta \mathrm{ABC} \) are \( \mathrm{A}(1,-\frac{3}{2}), \mathrm{B}(-3,-\frac{7}{2}) \) and \( \mathrm{C}(-4,-\frac{3}{2}) \).

We know that,

The distance between two points \( \mathrm{A}\left(x_{1}, y_{1}\right) \) and \( \mathrm{B}\left(x_{2}, y_{2}\right) \) is \( \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \).

Therefore,

\( \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \)

\( =\sqrt{(-3-1)^{2}+(-\frac{7}{2}+\frac{3}{2})^{2}} \)

\( =\sqrt{(-4)^{2}+(\frac{-4}{2})^{2}} \)

\( =\sqrt{16+4} \)

\( =\sqrt{20} \)

Similarly,

\( \mathrm{BC}=\sqrt{(-4+3)^{2}+(-\frac{3}{2}+\frac{7}{2})^{2}} \)

\( =\sqrt{(-1)^{2}+(\frac{4}{2})^{2}} \)

\( =\sqrt{1+4}$

$=\sqrt{5}$

\( \mathrm{CA}=\sqrt{(1+4)^{2}+(-\frac{3}{2}+\frac{3}{2})^{2}} \)

\( =\sqrt{(5)^{2}+(0)^{2}} \)

\( =\sqrt{25} \)

\( =5 \)

Here,

\( \mathrm{CA} \) is the longest side.

\( \mathrm{AB}^{2}+\mathrm{BC}^{2}=(\sqrt{20})^{2}+(\sqrt{5})^{2} \)

\( =20+5=25 \)

\( \mathrm{CA}^{2}=(5)^{2}=25 \)

\( \therefore \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{CA}^{2} \)

Therefore, \( \Delta \mathrm{ABC} \) is a right triangle.

Hence proved.

Updated on: 10-Oct-2022

29 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements