- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify:
$ \left\{\left(\frac{3}{7}\right)^{-2}\right\}^{-3} \div\left(\frac{-9}{49}\right)^{2} $
Given:
\( \left\{\left(\frac{3}{7}\right)^{-2}\right\}^{-3} \div\left(\frac{-9}{49}\right)^{2} \)
To do:
We have to simplify \( \left\{\left(\frac{3}{7}\right)^{-2}\right\}^{-3} \div\left(\frac{-9}{49}\right)^{2} \).
Solution:
We know that,
$a^{-m}=\frac{1}{a^m}$
$a^m \times a^n=a^{m+n}$
$a^{m}\div a^{n}=a^{m-n}$
Therefore,
${(\frac{3}{7})^{-2}}^{-3} \div(\frac{-9}{49})^{2}=[(\frac{7}{3})^2]^{-3} \div (\frac{-3^2}{7^2})^{2}$
$=[(\frac{3}{7})^2]^{3}\times\frac{(-3^2)^2}{(7^2)^2})$
$=(\frac{3}{7})^{3\times2}\times\frac{3^4}{7^4}$
$=(\frac{3}{7})^6\times(\frac{3}{7})^4$
$=(\frac{3}{7})^{6+4}$
$=(\frac{3}{7})^{10}$
Hence, ${(\frac{3}{7})^{-2}}^{-3} \div(\frac{-9}{49})^{2}=(\frac{3}{7})^{10}$.
Advertisements