- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that the square of any positive integer is of the form $5q$, $5q+1$, $5q+4$ for some integer q.
Given: Statement "Any positive integer is of the form $5q$, $5q\ +\ 1$, $5q\ +\ 4$ for some integer q".
To prove: Here we have to prove that the square of any positive integer is of the form $5q$, $5q\ +\ 1$, $5q\ +\ 4$ for some integer q.
Solution:
Let us consider 'a' as an integer number such that $a\ =\ 5m\ +\ r$.
According to Euclid's division algorithm:
$a\ =\ bm\ +\ r$, where $0\ \underline{< }\ r\ <\ b$.
Here, b = 5. So,
$a\ =\ 5m\ +\ r$, where $0\ \underline{< }\ r\ <\ 5$.
We need then to consider all cases of r.
When, r = 0:
Let's also consider q to be equal to $m^2$.
When $r\ =\ 0$ we can conclude that $a\ =\ 5m$.
$a\ =\ 5m$
$a^2\ =\ ( 5m )^2$
$a^2\ =\ 5 \left( 5m^{2}\right)$
$a^2\ =\ 5q$
When, r = 1:
Let's also consider q to be equal to $5m^2\ +\ 2m$.
$a\ =\ 5m\ +\ 1$
$a^2\ =\ ( 5m\ +\ 1 )^2$
$a^2\ =\ 25m^2\ +\ 10m\ +\ 1$
$a^2\ =\ 5( 5m^2\ +\ 2m )\ +\ 1$
$a^2\ =\ 5q\ +\ 1$
When, r = 2:
Let's also consider q to be equal to $5m^2\ +\ 4m$.
$a\ =\ 5m\ +\ 2$
$a^2\ =\ ( 5m\ +\ 2 )^2$
$a^2\ =\ 25m^2\ +\ 20m\ +\ 4$
$a^2\ =\ 5 ( 5m^2\ +\ 4m )\ +\ 4$
$a^2\ =\ 5q\ +\ 4$
When, r = 3:
Let's also consider q to be equal to $5m^2\ +\ 6m\ +\ 1$.
$a\ =\ 5m\ +\ 3$
$a^2\ =\ (5m\ +\ 3)^2$
$a^2\ =\ 25m^2\ +\ 9\ +\ 30m$
$a^2\ =\ 25m^2\ +\ 30m\ +\ 5\ +\ 4$
$a^2\ =\ 5 ( 5m^2\ +\ 6m\ +\ 1 )\ +\ 4$
$a^2\ =\ 5q\ +\ 4$.
When, r = 4:
Let's also consider q to be equal to $5m^2\ +\ 8m\ +\ 3$.
$a\ =\ 5m\ +\ 4$
$a^2\ =\ (5m\ +\ 4)^2$
$a^2\ =\ 25m^2\ +\ 40m\ +\ 15\ +\ 1$
$a^2\ =\ 5 ( 5m^2\ +\ 8m\ +\ 3 )\ +\ 1$
$a^2\ =\ 5q\ +\ 1$
Hence, the square of any positive integer is of the form 5q or 5q $+$ 1 or 5q $+$ 4.