In Fig. $ 6.40, \angle \mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ} $. If $ \mathrm{YO} $ and $ Z \mathrm{O} $ are the bisectors of $ \angle \mathrm{XYZ} $ and $ \angle \mathrm{XZY} $ respectively of $ \triangle \mathrm{XYZ} $ find $ \angle \mathrm{OZY} $ and $ \angle \mathrm{YOZ} $. "
Given:
$\angle X=62^o$, \angle XYZ=54^o$.
$YO$ and $ZO$ are bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$.
To do:
We have to find $\angle OZY$ and $\angle YOZ$.
Solution:
We know that the sum of the interior angles of the triangle are always $180^o$.
This implies,
$\angle X+\angle XYZ+\angle XZY=180^o$
By substituting the values of $X$ and $Y$ we get,
$62^o+54^o+\angle XZY=180^O$
This implies,
$116^o+\angle XZY=180^o$
$\angle XZY=180^o-116^o$
$\angle XZY=64^o$
We know that,
$YO$ and $ZO$ are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$
Therefore we get,
$\angle OYZ=\frac{1}{2}\angle XZY$
$\angle OYZ=\frac{54^o}{2}$
$\angle OYZ=27^o$
In the similar way we get,
$\angle OZY= \frac{1}{2}\angle XZY$
$\angle OZY=\frac{64^o}{2}$
$\angle OZY=32^o$
Since we know that sum of the interior angles of the triangle are always $180^o$, we get,
$\angle OZY+\angle OYZ+\angle O=180^o$
By substituting the values we get,
$32^o+27^o+\angle O=180^o$
$59^o+\angle O=180^o$
$\angle O=180^o-59^o$
$\angle O=121^o$
Hence, $\angle OZY=32^o$ and $\angle YOZ=27^o$.
Related Articles Construct a triangle \( \mathrm{XYZ} \) in which \( \angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ} \) and \( \mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm} \).
In Fig. 6.13, lines \( \mathrm{AB} \) and \( \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ} \) and \( \angle \mathrm{BOD}=40^{\circ} \), find \( \angle \mathrm{BOE} \) and reflex \( \angle \mathrm{COE} \)."\n
In Fig. 6.41, if \( \mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=35^{\circ} \) and \( \angle \mathrm{CDE}=53^{\circ} \), find \( \angle \mathrm{DCE} \)."\n
In Fig. 6.30, if \( \mathrm{AB} \| \mathrm{CD} \), EF \( \perp \mathrm{CD} \) and \( \angle \mathrm{GED}=126^{\circ} \), find \( \angle \mathrm{AGE}, \angle \mathrm{GEF} \) and \( \angle \mathrm{FGE} \)."\n
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{QPR} . \) If \( \angle \mathrm{A}+\angle \mathrm{B}=130^{\circ} \) and \( \angle B+\angle C=125^{\circ} \), find \( \angle Q \).
In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
In Fig. 6.39, sides \( \mathrm{QP} \) and \( \mathrm{RQ} \) of \( \triangle \mathrm{PQR} \) are produced to points \( \mathrm{S} \) and T respectively. If \( \angle \mathrm{SPR}=135^{\circ} \) and \( \angle \mathrm{PQT}=110^{\circ} \), find \( \angle \mathrm{PRQ} \)."\n
In Fig. 6.42, if lines \( \mathrm{PQ} \) and \( \mathrm{RS} \) intersect at point \( \mathrm{T} \), such that \( \angle \mathrm{PRT}=40^{\circ}, \angle \mathrm{RPT}=95^{\circ} \) and \( \angle \mathrm{TSQ}=75^{\circ} \), find \( \angle \mathrm{SQT} \)."\n
In Fig. 6.32, if \( \mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ} \) and \( \angle \mathrm{PRD}=127^{\circ} \), find \( x \) and \( y \)."\n
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \). If \( 2 \angle \mathrm{P}=3 \angle \mathrm{Q} \) and \( \angle C=100^{\circ} \), find \( \angle B \).
\( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
In \( \triangle \mathrm{XYZ}, \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{YM} \) is an altitude. If \( \mathrm{XM}=\sqrt{12} \) and \( \mathrm{ZM}=\sqrt{3} \), find \( \mathrm{YM} \).
Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
In Fig. 6.43, if \( \mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ} \) and \( \angle \mathrm{QRT}=65^{\circ} \), then find the values of \( x \) and \( y \)."\n
\( \angle \mathrm{A} \) and \( \angle \mathrm{B} \) are supplementary angles. \( \angle \mathrm{A} \) is thrice \( \angle \mathrm{B} \). Find the measures of \( \angle \mathrm{A} \) and \( \angle \mathrm{B} \)\( \angle \mathrm{A}=\ldots \ldots, \quad \angle \mathrm{B}=\ldots \ldots \)
Kickstart Your Career
Get certified by completing the course
Get Started