- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In each of the following determine rational numbers $a$ and $b$:$ \frac{4+3 \sqrt{5}}{4-3 \sqrt{5}}=a+b \sqrt{5} $
Given:
\( \frac{4+3 \sqrt{5}}{4-3 \sqrt{5}}=a+b \sqrt{5} \)
To do:
We have to determine rational numbers $a$ and $b$.
Solution:
We know that,
Rationalising factor of a fraction with denominator ${\sqrt{a}}$ is ${\sqrt{a}}$.
Rationalising factor of a fraction with denominator ${\sqrt{a}-\sqrt{b}}$ is ${\sqrt{a}+\sqrt{b}}$.
Rationalising factor of a fraction with denominator ${\sqrt{a}+\sqrt{b}}$ is ${\sqrt{a}-\sqrt{b}}$.
LHS $=\frac{4+3 \sqrt{5}}{4-3 \sqrt{5}}=\frac{(4+3 \sqrt{5})(4+3 \sqrt{5})}{(4-3 \sqrt{5})(4+3 \sqrt{5})}$
$=\frac{(4+3 \sqrt{5})^{2}}{(4)^{2}-(3 \sqrt{5})^{2}}$
$=\frac{16+45+24 \sqrt{5}}{16-45}$
$=\frac{61+24 \sqrt{5}}{-29}$
$=\frac{-61}{29}+\frac{-24}{29}\sqrt5$
Therefore,
$a+b \sqrt{5}=\frac{-61}{29}+\frac{-24}{29}\sqrt{5}$
Comparing both sides, we get,
$a=\frac{-61}{29}$ and $b=\frac{-24}{29}$
Hence, $a=\frac{-61}{29}$ and $b=\frac{-24}{29}$.