- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \sec A=\frac{17}{8} $, verify that $ \frac{3-4 \sin ^{2} A}{4 \cos ^{2} A-3}=\frac{3-\tan ^{2} A}{1-3 \tan ^{2} A} $
Given:
$sec\ A = \frac{17}{8}$.
To do:
We have to verify that \( \frac{3-4 \sin ^{2} A}{4 \cos ^{2} A-3}=\frac{3-\tan ^{2} A}{1-3 \tan ^{2} A} \).
Solution:
Let, in a triangle $ABC$ right-angled at $B$, $sec\ A=\frac{17}{8}$.
We know that,
In a right-angled triangle $ABC$ with right angle at $B$,
By Pythagoras theorem,
$AC^2=AB^2+BC^2$
By trigonometric ratios definitions,
$sin\ \theta=\frac{Opposite}{Hypotenuse}=\frac{BC}{AC}$
$cos\ \theta=\frac{Adjacent}{Hypotenuse}=\frac{AB}{AC}$
$sec\ \theta=\frac{Hypotenuse}{Adjacent}=\frac{AC}{AB}$
$tan\ \theta=\frac{Opposite}{Adjacent}=\frac{BC}{AB}$
Here,
$AC^2=AB^2+BC^2$
$\Rightarrow (17)^2=(8)^2+BC^2$
$\Rightarrow BC^2=289-64$
$\Rightarrow BC=\sqrt{225}=15$
Therefore,
$sin\ \theta=\frac{BC}{AC}=\frac{15}{17}$
$cos\ \theta=\frac{AB}{AC}=\frac{8}{17}$
$tan\ \theta=\frac{BC}{AB}=\frac{15}{8}$
This implies,
Let us consider LHS,
$\frac{3-4 \sin ^{2} A}{4 \cos ^{2} A-3}=\frac{3-4\left(\frac{15}{17}\right)^{2}}{4\left(\frac{8}{17}\right)^{2} -3}$
$=\frac{3-4\left(\frac{225}{289}\right)}{4\left(\frac{64}{289}\right) -3}$
$=\frac{\frac{3( 289) -4( 225)}{289}}{\frac{4( 64) -3( 289)}{289}}$
$=\frac{867-900}{256-867}$
$=\frac{-33}{-611}$
$=\frac{33}{611}$
Let us consider RHS,
$\frac{3-\tan ^{2} A}{1-3 \tan ^{2} A}=\frac{3-\left(\frac{15}{8}\right)^{2}}{1-3\left(\frac{15}{8}\right)^{2}}$
$=\frac{3-\left(\frac{225}{64}\right)}{1-3\left(\frac{225}{64}\right)}$
$=\frac{\frac{3( 64) -225}{64}}{\frac{64-3( 225)}{64}}$
$=\frac{192-225}{64-675}$
$=\frac{-33}{-611}$
$=\frac{33}{611}$
LHS $=$ RHS
Hence proved.