- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If from any point on the common chord of two intersecting circles, tangents be drawn to the circles, prove that they are equal.
Given:
From any point on the common chord of two intersecting circles, tangents be drawn to the circles.
To do:
We have to prove that they are equal.
Solution:
Let $QR$ be the common chord of two circles intersecting each other at $Q$ and $R$.
$P$ be the point on $QR$ when produced.
$PY$ and $PX$ be the tangents drawn to the circles with centres $O$ and $C$ respectively.
Proof:
$PY$ is the tangent and $PQR$ is the secant to the circle with centre $O$.
This implies,
$PY^2 = PQ \times PR$...….(i)
Similarly,
$PX$ is the tangent and $PQR$ is the secant to the circle with centre $C$.
This implies,
$PX^2 = PQ \times PR$..….(ii)
From (i) and (ii), we get,
$PY^2 = PX^2$
$PY = PX$
Hence proved.
Advertisements