If $ A=30^{\circ} $ and $ B=60^{\circ} $, verify that$ \sin (A+B)=\sin A \cos B+\cos A \sin B $


Given:

\( A=30^{\circ} \) and \( B=60^{\circ} \)

To do:

We have to verify that \( \sin (A+B)=\sin A \cos B+\cos A \sin B \).

Solution:  

We know that,

$\sin 30^{\circ}=\frac{1}{2}$

$\cos 30^{\circ}=\frac{\sqrt3}{2}$

$\sin 60^{\circ}=\frac{\sqrt3}{2}$

$\cos 60^{\circ}=\frac{1}{2}$

Let us consider LHS,

$\sin (A+B)=\sin (30^{\circ}+60^{\circ})$

$=\sin 90^{\circ}$      

$=1$      (Since $\sin 90^{\circ}=1$)

Let us consider RHS,

$\sin A \cos B+\cos A \sin B=\sin 30^{\circ} \cos 60^{\circ}+\cos 30^{\circ} \sin 60^{\circ}$

$=\left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) +\left(\frac{\sqrt3}{2}\right) \times \left(\frac{\sqrt{3}}{2}\right)$

$=\frac{1}{4} +\frac{3}{4}$

$=1$

LHS $=$ RHS

Hence proved.  

Updated on: 10-Oct-2022

26 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements