- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Evaluate each of the following:$ \sin 45^{\circ} \sin 30^{\circ}+\cos 45^{\circ} \cos 30^{\circ} $
Given:
\( \sin 45^{\circ} \sin 30^{\circ}+\cos 45^{\circ} \cos 30^{\circ} \)
To do:
We have to evaluate \( \sin 45^{\circ} \sin 30^{\circ}+\cos 45^{\circ} \cos 30^{\circ} \).
Solution:
We know that,
$\sin 45^{\circ}=\frac{1}{\sqrt2}$
$\sin 30^{\circ}=\frac{1}{2}$
$\cos 45^{\circ}=\frac{1}{\sqrt2}$
$\cos 30^{\circ}=\frac{\sqrt3}{2}$
$ \sin 45^{\circ} \sin 30^{\circ}+\cos 45^{\circ} \cos 30^{\circ}=\frac{1}{\sqrt2}\times\frac{1}{2}+\frac{1}{\sqrt2}\times\frac{\sqrt3}{2}$
$=\frac{1}{2\sqrt2}+\frac{\sqrt3}{2\sqrt2}$
$=\frac{1+\sqrt3}{2\sqrt2}$
Hence, $ \sin 45^{\circ} \sin 30^{\circ}+\cos 45^{\circ} \cos 30^{\circ}=\frac{1+\sqrt3}{2\sqrt2}$.
Advertisements