How many glasses of $ \frac{3}{4}$ L can be filled from a jar containing $ 4 \frac{1}{2}$ L of juice?
Given: Capacity of one glass = $\frac{3}{4}$ L
Capacity of a jar = $4 \frac{1}{2}$ L
Number of glasses = Capacity of a jar $\div$ Capacity of one glass
$4 \frac{1}{2} = \frac{4 \times2 + 1}{ 2} = 8 + \frac{1}{ 2} = \frac{9 }{ 2}$ (Converting to normal fraction)
Number of glasses = $\frac{\frac{9}{ 2}}{ \frac{3}{4}}$
=$\frac{ 9}{ 2} \times\frac{ 4 }{ 3}$
= $\frac{9 \times 4 }{ 2 \times 3}$
= $\frac{36}{ 6}$
Therefore, the number of glasses = 6
- Related Articles
- How many glasses of \( \frac{1}{5} L \) can be filled from a jar containing \( 6 \frac{2}{5} L \) of juice?
- Simplify: \( \left(\frac{2}{7} l-\frac{1}{4} m\right)\left(\frac{2}{7} l-\frac{1}{4} m\right) \).
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- i)a) $\frac{1}{4} of \frac{1}{4}$b) $\frac{1}{4} of \frac{3}{5} $c) $\frac{1}{4} of \frac{4}{3} $ii) a) $\frac{1}{ 7} of \frac{2}{ 9}$b) $\frac{1}{ 7} of \frac{6}{5}$c) $\frac{1}{ 7} of \frac{3}{10}$
- Add: $4 \frac{1}{2}+3 \frac{2}{4}$.
- Which is greater in each of the following:$(i)$. $\frac{2}{3},\ \frac{5}{2}$$(ii)$. $-\frac{5}{6},\ -\frac{4}{3}$$(iii)$. $-\frac{3}{4},\ \frac{2}{-3}$$(iv)$. $-\frac{1}{4},\ \frac{1}{4}$$(v)$. $-3\frac{2}{7\ },\ -3\frac{4}{5}$
- The value of \( \frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}}=? \)A. \( \quad \frac{3}{2} \)B. \( \left(\frac{3}{2}\right)^{-4} \)C. \( \frac{1}{2^{-4} \times 3^{-4}} \)D. \( \frac{1}{2^{4} \times 3^{-4}} \)
- \( 3+\frac{-1}{2}+\frac{-3}{4} \)
- Find: $\frac{1}{2}$ of (i) $2 \frac{3}{4}$ (ii) $4 \frac{2}{9}$.
- Simplify:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
- What should be subtracted from $(\frac{3}{4}-\frac{2}{3})$ to get $\frac{−1}{6}$?
- Solve the following:$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$.
- Find the value of:$\left(\frac{3}{4}\ +\ \frac{1}{4}\right)\ \div\ 2\frac{1}{2}\ -\ \left(\frac{2}{3}\ \times\ \frac{7}{8}\right)\ \div\ 1\frac{1}{4}$
- Find:(i) $\frac{1}{4}$ of (a) $\frac{1}{4}$(b) $\frac{3}{5}$ (c) $\frac{4}{3}$(ii) $\frac{1}{7}$ of (a) $\frac{2}{9}$ (b) $\frac{6}{5}$ (c) $\frac{3}{10}$
- Find the sum of two middle terms of the A.P.:$-\frac{4}{3}, -1, -\frac{2}{3}, -\frac{1}{3}, ......, 4\frac{1}{3}$.
Kickstart Your Career
Get certified by completing the course
Get Started