Solve the following:$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$.
Given :
The given expression is $3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$.
To do:
We have to solve the given expression.
Solution :
We have to use BODMAS in these types of problems.
In the Bodmas method, we have to solve in the following order: Brackets first, then of, then division, multiplication, and at last addition and subtraction.
$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72} = \frac{(3\times 5+2)}{5} \div (\frac{4}{5} \times \frac{1}{5}) + (\frac{2}{3} \times \frac{3}{4}) - \frac{(72\times 1+35)}{72}$
$= \frac{17}{5} \div \frac{4}{25} + \frac{1}{2} - \frac{107}{72}$
$ = \frac{17}{5} \times \frac{25}{4} + \frac{1}{2} - \frac{107}{72}$
$=\frac{(17\times 5)}{4} +\frac{1}{2} - \frac{107}{72}$
$ = \frac{85}{4} +\frac{1}{2} - \frac{107}{72}$
$= \frac{(18\times 85+36\times 1-107)}{72}$
$ = \frac{(1530+36-107)}{72}$
$= \frac{1459}{72}$.
Therefore, the value of $3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$ is $\frac{1459}{72}$.
Related Articles Solve $7\frac{1}{3}\div \frac{2}{3}$ of $2\frac{1}{5}+1\frac{3}{8}\div 2\frac{3}{4}-1 \frac{1}{2}$.
Solve:$3\frac{2}{7} \ \div \ 4\frac{3}{5} \ \times \ 1\frac{1}{2}$
Solve the following:$(\frac{5}{3})^4 \times (\frac{5}{3})^4 \div (\frac{5}{3})^2$.
Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
Find:(i) $\frac{2}{5}\div\frac{1}{2}$(ii) $\frac{4}{9}\div\frac{2}{3}$(iii) $\frac{3}{7}\div\frac{8}{7}$(iv) $2\frac{1}{3}\div\frac{3}{5}$(v) $3\frac{1}{2}\div\frac{8}{3}$(vi) $\frac{2}{5}\div1\frac{1}{2}$(vii) $3\frac{1}{5}\div1\frac{2}{3}$(viii) $2\frac{1}{5}\div1\frac{1}{5}$
Solve the following:$4\frac{1}{6}\times\frac{2}{5}\div\frac{1}{3}$
Simplify:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
Which is greater in each of the following:$(i)$. $\frac{2}{3},\ \frac{5}{2}$$(ii)$. $-\frac{5}{6},\ -\frac{4}{3}$$(iii)$. $-\frac{3}{4},\ \frac{2}{-3}$$(iv)$. $-\frac{1}{4},\ \frac{1}{4}$$(v)$. $-3\frac{2}{7\ },\ -3\frac{4}{5}$
Using distributive property, solve$\frac{2}{3}\times\frac{1}{5}-\frac{4}{5}-\frac{2}{3}\times\frac{3}{5}$
Verify the Following by using suitable property: $(\frac{5}{4}+\frac{-1}{2})+\frac{-3}{2}= \frac{5}{4}+(\frac{-1}{2}+\frac{-3}{2})$
Solve the following :$\frac{-2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$
Verify:$\frac{-2}{5} + [\frac{3}{5} + \frac{1}{2}] = [\frac{-2}{5} + \frac{3}{5}] + \frac{1}{2}$
Solve: $-\frac{2}{3}\ \times\ \frac{3}{5}\ +\ \frac{5}{2}\ -\ \frac{3}{5}\ \times\ \frac{1}{6}$
Write the following rational numbers in ascending order:$(i)$. $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$$(ii)$. $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$$(iii)$. $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$
Kickstart Your Career
Get certified by completing the course
Get Started