Find the value of $\sqrt{5}$ correct to two decimal places, then find the value of $\frac{3-\sqrt{5}}{3+\sqrt{5}}$ correct to two decimal places.
Given :
The given value is $\sqrt{5}$
To find :
We have to find the value of $\frac{3-\sqrt{5}}{3+\sqrt{5}}$
Solution :
The value of √5 can be found by long division method.
| 2.23 |
2 2 | 5.0000 4 |
42 2 | 100 84 |
443 3 | 1600 1329 |
| 271 |
The value of √5 correct to two decimal places is 2.23.
Therefore,
$\frac{3-\sqrt{5}}{3+\sqrt{5}} = \frac{3-2.23}{3+2.23}$
$=\frac{0.77}{5.23}$
$=\frac{77}{523} = 0.14$
The value of $\frac{3-\sqrt{5}}{3+\sqrt{5}}$ is 0.14
.
- Related Articles
- Simplify:\( \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} \)
- Find the value of \( \frac{6}{\sqrt{5}-\sqrt{3}} \), it being given that \( \sqrt{3}=1.732 \) and \( \sqrt{5}=2.236 \).
- Simplify:\( \frac{7+3 \sqrt{5}}{3+\sqrt{5}}-\frac{7-3 \sqrt{5}}{3-\sqrt{5}} \)
- Find the value to three places of decimals of each of the following. It is given that\( \sqrt{2}=1.414, \sqrt{3}=1.732, \sqrt{5}=2.236 \) and \( \sqrt{10}=3.162 \).\( \frac{2}{\sqrt{3}} \)
- Find the values of each of the following correct to three places of decimals, it being given that $\sqrt2= 1.4142, \sqrt3= 1.732, \sqrt5 = 2.2360, \sqrt6= 2.4495$ and $\sqrt{10}= 3.162$.\( \frac{3-\sqrt{5}}{3+2 \sqrt{5}} \)
- Simplify:\( \frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}+\sqrt{2}} \)
- Find a quadratic polynomial whose zeroes are $\frac{3+\sqrt{5}}{5}$ and $\frac{3-\sqrt{5}}{5}$.
- If \( \sqrt{2}=1.414, \sqrt{5}=2.236 \) and \( \sqrt{3}=1.732, \) find the value of:(i) \( \sqrt{72}+\sqrt{48} \)(ii) \( \sqrt{\frac{125}{64}} \)
- Simplify:\( \frac{1}{2+\sqrt{3}}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}} \)
- Prove that:\( \sqrt{3 \times 5^{-3}} \p \sqrt[3]{3^{-1}} \sqrt{5} \times \sqrt[6]{3 \times 5^{6}}=\frac{3}{5} \)
- Simplify each of the following expressions:(i) \( (3+\sqrt{3})(2+\sqrt{2}) \)(ii) \( (3+\sqrt{3})(3-\sqrt{3}) \)(iii) \( (\sqrt{5}+\sqrt{2})^{2} \)(iv) \( (\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}) \)
- Solve the following:$\sqrt{3\times 5^{-3} \ } \div \sqrt[3] 3^{-1} \ \sqrt{5} \ \times \acute{}\sqrt[6]{3\times 5^{5}}$
- If $\sqrt[3]{1728} \ =\ 12$, then find the value of $\sqrt[3]{0.000001728}$.
- Find the value of: $\sqrt[3]{0.008}+\sqrt[3]{5832}-\sqrt[3]{4.096}$.
- $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}+\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}=a+b \sqrt{10}$, find a and b.
Kickstart Your Career
Get certified by completing the course
Get Started