Find the value of $2^o+3^o+4^o$.
Given:
$2^o+3^o+4^o$.
To do:
We have to find the value of $2^o+3^o+4^o$.
Solution:
$2^o+3^o+4^o=(2+3+4)^o$
$=9^o$
The value of $2^o+3^o+4^o$ is $9^o$.
- Related Articles
- Find the value of $3tan^{2} 26^{o} -3cosec^{2} 64^{o}$.
- Find the value of $( sin^{2}33^{o} + sin^{2}57^{o})$.
- Find the value of $\frac{tan60^o-tan30^o}{1+tan60^o\times tan30^o}$.
- What is the value of $ ( cos^{2}67^{o} – sin^{2}23^{o})=?$
- Without using trigonometric tables, find the value of the following expression:$\frac{sec( 90^{o}-\theta ) .cosec\theta -tan( 90^{o} -\theta ) cot\theta +cos^{2} 25^{o}+cos^{2} 65^{o} }{3tan27^{o} tan63^{o}}$.
- Find the value of:$\frac{sin\ 30^{o}}{cos\ 45^{o}} \ +\ \frac{cot\ 45^{o}}{sec\ 60^{o}} \ -\ \frac{sin\ 60^{o}}{tan\ 45^{o}} \ -\ \frac{cos\ 30^{o}}{sin\ 90^{o}}$
- The angles of a triangle are $(x - 40)^o, (x - 20)^o$ and $(\frac{1}{2}x - 10)^o$. Find the value of $x$.
- In a cyclic quadrilateral ABCD, $\angle A = (2x+ 4)^o, \angle B = (y + 3)^o, \angle C = (2y+10)^o$ and $\angle D = (4x - 5)^o$. Find the four angles.
- Evaluate: $sin^{2}19^{o}+sin^{2}71^{o}$.
- The blood groups of 30 students of class IX are recorded as follows:A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O,A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O,A student is selected at random from the class from blood donation. Find the probability that the blood group of the student chosen is A.
- If one of the complementary angles is twice the other, the two angles are a) $60^o, 30^o$b) $20^o, 60^o$c) $40^o, 40^o$d) $10^o, 70^o$
- Evaluate: $log\ sin1^o.log\ sin 2^o. log\ sin3^o\ ........log\ sin90^o$.
- Equal circles with centres \( O \) and \( O^{\prime} \) touch each other at \( X . O O^{\prime} \) produced to meet a circle with centre \( O^{\prime} \), at \( A . A C \) is a tangent to the circle whose centre is O. \( O^{\prime} D \) is perpendicular to \( A C \). Find the value of \( \frac{D O^{\prime}}{C O} \)."\n
- Show that:(i) $tan\ 48^o\ tan\ 23^o\ tan\ 42^o\ tan\ 67^o = 1$(ii) $cos\ 38^o\ cos\ 52^o - sin\ 38^o\ sin\ 52^o = 0$
- In a $\triangle ABC$, $\angle A = x^o, \angle B = (3x– 2)^o, \angle C = y^o$. Also, $\angle C - \angle B = 9^o$. Find the three angles.
Kickstart Your Career
Get certified by completing the course
Get Started