- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In a cyclic quadrilateral ABCD, $\angle A = (2x+ 4)^o, \angle B = (y + 3)^o, \angle C = (2y+10)^o$ and $\angle D = (4x - 5)^o$. Find the four angles.
Given:
In a cyclic quadrilateral ABCD, $\angle A = (2x+ 4)^o, \angle B = (y + 3)^o, \angle C = (2y+10)^o$ and $\angle D = (4x - 5)^o$.
To do:
We have to find the four angles.
Solution:
We know that,
Sum of the angles in a quadrilateral is $360^o$.
Sum of the opposite angles in a cyclic quadrilateral is $180^o$.
Therefore,
$\angle A+\angle C=180^o$
$ (2x + 4)^o+(2y+10)^o=180^o$
$2x+2y=180^-14^o$
$2(x+y)=166^o$
$x+y=83^o$
$x=83^o-y$.....(i)
$\angle B+\angle D=180^o$
$(y + 3)^o+ (4x - 5)^o=180^o$
$y+4x-2^o=180^o$
$y+4(83^o-y)=180^o+2^o$ (From (i))
$y+332^o-4y=182^o$
$3y=332^o-182^o$
$3y=150^o$
$y=\frac{150^o}{3}$
$y=50^o$
$x=83^o-50^o$ (From (i))
$x=33^o$
This implies,
$\angle A = (2x + 4)^o$
$=2(33^o)+4^o$
$=66^o+4^o$
$=70^o$
$\angle B = (y + 3)^o$
$=50^o+3^o$
$=53^o$
$\angle C = (2y+10)^o$
$=2(50^o)+10^o$
$=100^o+10^o$
$=110^o$
$\angle D = (4x - 5)^o$
$=4(33^o)-5^o$
$=132^o-5^o$
$=127^o$
The four angles are $\angle A=70^o$, $\angle B=53^o$, $\angle C=110^o$ and $\angle D=127^o$.