- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the area of a quadrilateral $ABCD$, the coordinates of whose vertices are $A (-3, 2), B (5, 4), C (7, -6)$ and $D (-5, -4)$.
Given:
Vertices of the quadrilateral $ABCD$ are $A(-3, 2), B(5, 4), C(7, -6)$ and $D(-5, -4)$.
To do:
We have to find the area of the quadrilateral.
Solution:
Join $A$ and $C$ to get two triangles $ABC$ and $ADC$.
This implies,
Area of quadrilateral $ABCD=$ Area of triangle $ABC+$ Area of triangle $ADC$.
We know that,
Area of a triangle with vertices $(x_1,y_1), (x_2,y_2), (x_3,y_3)$ is given by,
Area of $\Delta=\frac{1}{2}[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]$
Therefore,
Area of triangle \( ABC=\frac{1}{2}[-3(4+6)+5(-6-2)+7(2-4)] \)
\( =\frac{1}{2}[-3(10)+5(-8)+7(-2)] \)
\( =\frac{1}{2}[-30-40-14] \)
\( =\frac{1}{2} \times (-84) \)
\( =42 \) sq. units.
Area of triangle \( ADC=\frac{1}{2}[-3(-6+4)+7(-4-2)+-5(2+6)] \)
\( =\frac{1}{2}[-3(-2)+7(-6)+(-5)(8)] \)
\( =\frac{1}{2}[6-42-40] \)
\( =\frac{1}{2} \times (-76) \)
\( =38 \) sq. units.
Therefore,
The area of the quadrilateral $ABCD=42+38=80$ sq. units.
The area of the quadrilateral $ABCD$ is $80$ sq. units.