- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the area of the quadrilaterals, the coordinates of whose vertices are$(-4, -2), (-3, -5), (3, -2), (2, 3)$
Given:
Vertices of a quadrilateral are $(-4, -2), (-3, -5), (3, -2), (2, 3)$.
To do:
We have to find the area of the quadrilateral.
Solution:
Let $A (-4, -2), B (-3, -5), C(3,-2)$ and $D (2, 3)$ be the vertices of a quadrilateral $ABCD$.
Join $A$ and $C$ to get two triangles $ABC$ and $ADC$.
This implies,
Area of quadrilateral $ABCD=$ Area of triangle $ABC+$ Area of triangle $ADC$.
We know that,
Area of a triangle with vertices $(x_1,y_1), (x_2,y_2), (x_3,y_3)$ is given by,
Area of $\Delta=\frac{1}{2}[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]$
Therefore,
Area of triangle \( ABC=\frac{1}{2}[-4(-5+2)+(-3)(-2+2)+3(-2+5)] \)
\( =\frac{1}{2}[-4(-3)+(-3)0+3(3)] \)
\( =\frac{1}{2}[12+9] \)
\( =\frac{1}{2} \times 21 \)
\( =\frac{21}{2} \) sq. units.
Area of triangle \( ADC=\frac{1}{2}[-4(-2-3)+2(-2+2)+3(3+2)] \)
\( =\frac{1}{2}[-4(-5)+2(0)+3(5)] \)
\( =\frac{1}{2}[20+0+15] \)
\( =\frac{1}{2} \times 35 \)
\( =\frac{35}{2} \) sq. units.
Therefore,
The area of the quadrilateral $ABCD=\frac{21}{2}+\frac{35}{2}=\frac{21+35}{2}=\frac{56}{2}=28$ sq. units.
The area of the given quadrilateral is $28$ sq. units.