- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Fill in the Blanks:
(i) $ \sqrt[3]{125 \times 27}=3 \times $
(ii) $ \sqrt[3]{8 \times \ldots}=8 $
(iii) $ \sqrt[3]{1728}=4 \times $__
(iv) $ \sqrt[3]{480}=\sqrt[3]{3} \times 2 \times \sqrt[3]{-} $
(v) $ \sqrt[3]{\square}=\sqrt[3]{7} \times \sqrt[3]{8} $
(vi) $ \sqrt[3]{-}=\sqrt[3]{4} \times \sqrt[3]{5} \times \sqrt[3]{6} $
(vii) $ \sqrt[3]{\frac{27}{125}}=\frac{}{5} $
(viii) $ \sqrt[3]{\frac{729}{1331}}=\frac{9}{-} $
(ix) $ \sqrt[3]{\frac{512}{-}}=\frac{8}{13} $
To find:
We have to fill in the blanks.
Solution:
(i) $\sqrt[3]{125 \times 27}=\sqrt[3]{5 \times 5 \times 5 \times 3 \times 3 \times 3}$
$=\sqrt[3]{5^{3} \times 3^{3}}$
$=5 \times 3$
$=3 \times 5$
(ii) $\sqrt[3]{8 \times}$__$=8$
$\sqrt[3]{8 \times}$__$=\sqrt[3]{8^{3}}$
$=\sqrt[3]{8 \times 8 \times 8}$
Therefore,
$\sqrt[3]{8 \times 8 \times 8}=8$
(iii) $\sqrt[3]{1728}=\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3}$
$=\sqrt[3]{2^{3} \times 2^{3} \times 3^{3}}$
$=2 \times 2 \times 3$
$=4 \times 3$
Therefore,
$\sqrt[3]{1728}=4 \times \underline{3}$
(iv) $\sqrt[3]{480}=\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5}$
$=\sqrt[3]{2^{3} \times 2 \times 2 \times 3 \times 5}$
$=\sqrt[3]{2^{3}} \times \sqrt[3]{2 \times 2 \times 3 \times 5}$
$=2 \times \sqrt[3]{3} \times \sqrt[3]{20}$
Therefore,
$\sqrt[3]{480}=\sqrt[3]{3} \times 2 \times \underline{\sqrt[3]{20}}$
(v) $\sqrt[3]{\square}=\sqrt[3]{7} \times \sqrt[3]{8}$
$\sqrt[3]{7} \times \sqrt[3]{8}=\sqrt[3]{7 \times 8}$
$=\sqrt[3]{56}$
Therefore,
$\sqrt[3]{\underline{56}}=\sqrt[3]{7} \times \sqrt[3]{8}$
(vi) $\sqrt[3]{4} \times \sqrt[3]{5} \times \sqrt[3]{6}=\sqrt[3]{4 \times 5 \times 6}$
$=\sqrt[3]{120}$
Therefore,
$\sqrt[3]{\underline{120}}=\sqrt[3]{4} \times \sqrt[3]{5} \times \sqrt[3]{6}$
(vii) $\sqrt[3]{\frac{27}{125}}=\sqrt[3]{\frac{3 \times 3 \times 3}{5 \times 5 \times 5}}$
$=\sqrt[3]{\frac{3}{5} \times \frac{3}{5} \times \frac{3}{5}}$
$=\sqrt[3]{(\frac{3}{5})^{3}}$
$=\frac{\underline{3}}{5}$
(viii) $\sqrt[3]{\frac{729}{1331}}=\sqrt[3]{\frac{9 \times 9 \times 9}{11 \times 11 \times 11}}$
$=\sqrt[3]{\frac{9^{3}}{11^{3}}}$
$=\frac{9}{11}$
Therefore,
$\sqrt[3]{\frac{729}{1331}}=\frac{9}{11}$
(ix) $\frac{8}{13}=\sqrt{(\frac{8}{13})^{3}}$
$=\sqrt[3]{\frac{8 \times 8 \times 8}{13 \times 13 \times 13}}$
$=\sqrt[3]{\frac{512}{2197}}$
Therefore,
$\sqrt[3]{\frac{512}{2197}}=\frac{8}{13}$