Express each of the following as percent:
(i) $\frac{3}{4}$
(ii) $\frac{2}{3}$
Given :
The given fractions are (i) $\frac{3}{4}$, (ii) $\frac{2}{3}$.
To do :
We have to express the given fraction as percentages.
Solution :
(i) $\frac{3}{4}$
To express the given fraction as percent multiply by 100.
$\frac{3}{4} \times 100 = 3\times 25 =75$%.
Therefore, $\frac{3}{4}$ can be expressed as 75%.
(ii) $\frac{2}{3}$
$\frac{2}{3} \times 100 = \frac{200}{3} = 66 \frac{2}{3}$%.
Therefore, $\frac{2}{3}$ can be expressed as $66 \frac{2}{3}$%.
- Related Articles
- Which is greater in each of the following:$(i)$. $\frac{2}{3},\ \frac{5}{2}$$(ii)$. $-\frac{5}{6},\ -\frac{4}{3}$$(iii)$. $-\frac{3}{4},\ \frac{2}{-3}$$(iv)$. $-\frac{1}{4},\ \frac{1}{4}$$(v)$. $-3\frac{2}{7\ },\ -3\frac{4}{5}$
- Find: (a) $\frac{1}{2}$ of (i) $2\frac{3}{4}$ (ii) $4\frac{2}{9}$(b) $\frac{5}{8}$ of (i) $3\frac{5}{6}$ (ii) $9\frac{2}{3}$
- Write the following rational numbers in ascending order:$(i)$. $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$$(ii)$. $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$$(iii)$. $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$
- Find: $\frac{1}{2}$ of (i) $2 \frac{3}{4}$ (ii) $4 \frac{2}{9}$.
- Express each of the following rational numbers with a positive exponent:(i) \( \left(\frac{3}{4}\right)^{-2} \)(ii) \( \left(\frac{5}{4}\right)^{-8} \)(iii) \( 4^{3} \times 4^{-9} \)(iv) \( \left\{\left(\frac{4}{3}\right)^{-3}\right\}^{-4} \)(v) \( \left\{\left(\frac{3}{2}\right)^{4}\right\}^{-2} \)
- Using commutativity and associativity of addition of rational numbers, express each of the following as a rational number:(i) \( \frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3} \)(ii) \( \frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9} \)(iii) \( \frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3} \)(iv) \( \frac{4}{7}+0+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{21} \)
- Express the following as Improper fraction:$3 \frac{1}{4}$.
- Express each of the following rational numbers with a negative exponent:(i) \( \left(\frac{1}{4}\right)^{3} \)(ii) \( 3^{5} \)(iii) \( \left(\frac{3}{5}\right)^{4} \)(iv) \(\left\{\left(\frac{3}{2}\right)^{4}\right\}^{-3} \)(v) \( \left\{\left(\frac{7}{3}\right)^{4}\right\}^{-3} \)
- Express each of the following as a rational number of the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q≠0$:(i) \( 2^{-3} \)(ii) \( (-4)^{-2} \)(iii) \( \frac{1}{3^{-2}} \)(iv) \( \left(\frac{1}{2}\right)^{-5} \)(v) \( \left(\frac{2}{3}\right)^{-2} \)
- Express the following rational numbers as decimals:\( \frac{2}{3} \)
- Solve each of the following equations and also check your results in each case:
(i) $\frac{3x}{4}-\frac{x-1}{2}=\frac{x-2}{3}$
(ii) $\frac{5x}{3}-\frac{(x-1)}{4}=\frac{(x-3)}{5}$
- Simplify and express each of the following as power of a rational numberi) \( \left(\frac{2}{3}\right)^{3} \times\left(\frac{-6}{7}\right)^{2} \times\left(\frac{-7}{4}\right) \times \frac{3}{2} \)ii) \( -\left(\frac{2}{5}\right)^{2} \times\left(\frac{5}{7}\right)^{2} \times \frac{49}{5}+\left(\frac{-4}{5}\right)^{3} \times \frac{5}{4} \times \frac{3}{4} \)
- Simplify each of the following:$\frac{1}{3}$ of $1 \frac{1}{4}+2 \frac{1}{3}$
- Simpify the following:$-\frac{2}{3}+(\frac{2}{3}+\frac{4}{5})$
- Write four more rational numbers in each of the following patterns:$(i)$. $\frac{-3}{5},\ \frac{-6}{10},\ \frac{-9}{15},\ \frac{-12}{20}$........$(ii)$. $\frac{-1}{4},\ \frac{-2}{8},\ \frac{-3}{12}$.....$(iii)$. $\frac{-1}{6},\ \frac{2}{-12},\ \frac{3}{-18},\ \frac{4}{-24}$......$(iv)$. $\frac{-2}{3},\ \frac{2}{-3},\ \frac{4}{-6},\ \frac{6}{-9}$.....
Kickstart Your Career
Get certified by completing the course
Get Started