- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Construction a quadrilateral $LION$ with $LI=6.5\ cm$, $IO=7.2\ cm$, $\angle I=90^o$, $\angle O = 60^o$ and $\angle N=105^o$.
Given: A quadrilateral $LION$ with $LI=6.5\ cm,\ IO=7.2\ cm,\ \angle I=90^o,\ \angle O = 60^o$ and $\angle N=105^o$.
To do: To construct the quadrilateral $LION$.
Solution:
As given, In quadrilateral $LION$: $LI=6.5\ cm,\ IO=7.2\ cm,\ \angle I=90^o,\ \angle O = 60^o$ and $\angle N=105^o$
$\Rightarrow \angle L +\angle I +\angle O+\angle N=360^o$
$\Rightarrow \angle L+90^o+60^o+105^o=360^o$
$\Rightarrow \angle L+255^o=360^o$
$\Rightarrow \angle L=360^o-255^o$
$\Rightarrow \angle L=105^o$
1. Draw $LI=6.5\ cm$.
2. Draw an angle $\angle XLI=105^o$ at point $L$.
3. Draw an angle $\angle I=90^o$ at point $I$.
4. Take point $I$ as center and draw an arc with radius $7.2\ cm$ which intersects the line at $O$.
5. At $O$, draw an angle $\angle YOI=60^o$.
6. $OY$ intersects $LX$ at $N$
Thus, $LION$ is the required quadrilateral.
- Related Articles
- In the figure, if $\angle BAC = 60^o$ and $\angle BCA = 20^o$, find $\angle ADC$."\n
- Construct a triangle $XYZ$ in which $\angle Y = 30^o , \angle Z = 90^o$ and $XY +YZ + ZX = 11\ cm$.
- In a cyclic quadrilateral ABCD, $\angle A = (2x+ 4)^o, \angle B = (y + 3)^o, \angle C = (2y+10)^o$ and $\angle D = (4x - 5)^o$. Find the four angles.
- In a cyclic quadrilateral $ABCD$, if $\angle A - \angle C = 60^o$, prove that the smaller of two is $60^o$.
- ABCD is a cyclic quadrilateral such that $\angle A = (4y + 20)^o, \angle B = (3y – 5)^o, \angle C = (4x)^o$ and $\angle D = (7x + 5)^o$. Find the four angles.
- Tick the correct answer and justify : In $∆ABC, AB = 6\sqrt3\ cm, AC = 12\ cm$ and $BC = 6\ cm$. The angle B is:(a) $120^o$(b) $60^o$(c) $90^o$(d) $45^o$
- In the figure, $ABCD$ is a cyclic quadrilateral. If $\angle BCD = 100^o$ and $\angle ABD = 70^o$, find $\angle ADB$."\n
- $ABCD$ is a cyclic quadrilateral in which $\angle DBC = 80^o$ and $\angle BAC = 40^o$. Find $\angle BCD$.
- $ABCD$ is a cyclic quadrilateral in which $\angle BCD = 100^o$ and $\angle ABD = 70^o$, find $\angle ADB$.
- In the figure, $ABCD$ is a parallelogram in which $\angle DAB = 75^o$ and $\angle DBC = 60^o$. Compute $\angle CDB$ and $\angle ADB$."\n
- In a $\triangle ABC, \angle ABC = \angle ACB$ and the bisectors of $\angle ABC$ and $\angle ACB$ intersect at $O$ such that $\angle BOC = 120^o$. Show that $\angle A = \angle B = \angle C = 60^o$.
- In figure below, $\angle ABC = 69^o, \angle ACB = 31^o$, find $\angle BDC$."\n
- The exterior angle PRS of triangle PQR is $105^o$. If $\angle Q=70^o$, find $\angle P$. Is $\angle PRS > \angle P$.
- In a $\triangle ABC$, $\angle A = x^o, \angle B = (3x– 2)^o, \angle C = y^o$. Also, $\angle C - \angle B = 9^o$. Find the three angles.
- In the figure, $AB = AC$ and $\angle ACD = 105^o$, find $\angle BAC$."\n
