Construct a triangle $ \mathrm{PQR} $ in which $ \mathrm{QR}=6 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ} $ and $ \mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm} $.
Given:
$QR=6\ cm, \angle Q=60^o$ and $PR-PQ=2\ cm$.
To do:
We have to construct a $\triangle PQR$.
Solution:
Steps of construction:
(i) Let us draw a line segment $QR$ of length $6\ cm$.
(ii) Now, construct an angle $RQX$ such that $\angle RQX=60^o$
(iii) Now, by taking a measure of $PR-PQ=2\ cm$ with the compasses, let us draw an arc from point $Q$ and mark it as Point $Y$. Since $PQ-PR$ is negative, the line $QY$ will be below the line segment $QR$.
(v) Now, by taking compasses let us draw another arc from point $Q$ on $QX$.
(vi) Now, let us join $YR$. Then by taking compasses let us draw a perpendicular bisector of the line $YR$ and mark the intersection point of the bisector with the ray $QX$ as $P$
(v) Now, let us join $PR$. Therefore, $PQR$ is the required triangle.
Related Articles 10. Construct \( \triangle \mathrm{PQR} \) with \( \mathrm{PQ}=4.5 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ} \) and \( \mathrm{PR}=4.5 \mathrm{~cm} . \) Measure \( \angle \mathrm{Q} \) and \( \angle \mathrm{R} \). What type of a triangle is it?
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
In \( \triangle \mathrm{PQR}, \quad \angle \mathrm{P}=\angle \mathrm{Q}+\angle \mathrm{R}, \mathrm{PQ}=7 \) and \( \mathrm{QR}=25 \). Find the perimeter of \( \triangle \mathrm{PQR} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{B}=45^{\circ} \) and \( \mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm} \).
\( \triangle \mathrm{PQR} \sim \triangle \mathrm{ZYX} . \quad \) If \( \mathrm{PQ}: \mathrm{ZY}=5: 3 \) and \( \mathrm{PR}=10 \mathrm{~cm} \), find \( \mathrm{ZX} \).
Construct a triangle \( \mathrm{XYZ} \) in which \( \angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ} \) and \( \mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm} \).
In a \( \Delta \mathrm{PQR}, \mathrm{PR}^{2}-\mathrm{PQ}^{2}=\mathrm{QR}^{2} \) and \( \mathrm{M} \) is a point on side \( \mathrm{PR} \) such that \( \mathrm{QM} \perp \mathrm{PR} \).Prove that \( \mathrm{QM}^{2}=\mathrm{PM} \times \mathrm{MR} \).
Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
Choose the correct answer from the given four options:If in two triangles \( \mathrm{ABC} \) and \( \mathrm{PQR}, \frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}} \), then(A) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{CAB} \)(B) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{ABC} \)(C) \( \triangle \mathrm{CBA} \sim \triangle \mathrm{PQR} \)(D) \( \triangle \mathrm{BCA} \sim \triangle \mathrm{PQR} \)
In \( \Delta \mathrm{PQR}, \mathrm{M} \) and \( \mathrm{N} \) are the midpoints of \( \mathrm{PQ} \) and PR respectively. If the area of \( \triangle \mathrm{PMN} \) is \( 24 \mathrm{~cm}^{2} \), find the area of \( \triangle \mathrm{PQR} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \). If \( 2 \angle \mathrm{P}=3 \angle \mathrm{Q} \) and \( \angle C=100^{\circ} \), find \( \angle B \).
In figure below, \( \mathrm{PQR} \) is a right triangle right angled at \( \mathrm{Q} \) and \( \mathrm{QS} \perp \mathrm{PR} \). If \( P Q=6 \mathrm{~cm} \) and \( P S=4 \mathrm{~cm} \), find \( Q S, R S \) and \( Q R \)."
Kickstart Your Career
Get certified by completing the course
Get Started