- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Co-ordinates of the point P dividing the line segment joining the points A(1, 3) and B(4, 6), in the ratio 2:1 are:
$( A) \ ( 2,4)$
$( B) \ ( 3,\ 5)$
$( C) \ ( 4,\ 2)$
$( D) \ ( 5,\ 3)$
Given: A line segment AB, joining the points $A( 1,\ 3)$ and $B( 4,\ 6)$ and a point P lies on the given line segment AB dividing the line segment in the ratio 2:1.
To do: To find out the co-ordinates of the given line segment.
Solution: We know that if there is line segment AB joining two points $A( x_{1} ,y_{1})$ and $B( x_{2} ,y_{2})$ and there is a point $P( x,\ y)$ lying on the line segment dividing in the ratio m:n
Then Using section formula, we have, $P( x,\ y) =\left(\frac{nx_{1} +mx_{2}}{m+n} ,\ \frac{ny_{1} +my_{2}}{m+n}\right)$
Here we have, $\ x_{1} =1,x_{2} =4,y_{1} =3\ and\ y_{2} =6\ ,m=2\ and\ n=1$
$\therefore \ P( x,\ y) =\left(\frac{1\times 1+2\times 4}{2+1} ,\ \frac{1\times 3+2\times 6}{2+1}\right)$
$=\left(\frac{9}{3} ,\ \frac{15}{3}\right)$
$=( 3,5)$
$\therefore$ Option $( B)$ is correct.
- Related Articles
- Find the ratio in which the point \( \mathrm{P}\left(\frac{3}{4}, \frac{5}{12}\right) \) divides the line segment joining the points \( A \frac{1}{2}, \frac{3}{2} \) and B \( (2,-5) \).
- Find the ratio in which the points $P (\frac{3}{4} , \frac{5}{12})$ divides the line segments joining the points $A (\frac{1}{2}, \frac{3}{2})$ and $B (2, -5)$.
- Find the point which divides the line segment joining the points $(7,\ –6)$ and $(3,\ 4)$ in ratio 1 : 2 internally.
- If $P (9a – 2, -b)$ divides the line segment joining $A (3a + 1, -3)$ and $B (8a, 5)$ in the ratio $3 : 1$, find the values of $a$ and $b$.
- If the point $C (-1, 2)$ divides internally the line segment joining the points $A (2, 5)$ and $B (x, y)$ in the ratio $3 : 4$, find the value of $x^2 + y^2$.
- Convert each part of the ratio to percentage:$(a).\ 3:1$ $(b).\ 2:3:5$ $(c).\ 1:4$ $(d).\ 1:2:5$
- If$P\left(\frac{a}{2} ,4\right)$ is the mid-point of the line segment joining the points $A( -6,\ 5)$ and $( -2,\ 3)$, then the value of a is:$( A) \ -8$$( B) \ \ 3$$( C) \ -4$$( D) \ \ 44$
- Find the ratio in which $P( 4,\ m)$ divides the line segment joining the points $A( 2,\ 3)$ and $B( 6,\ –3)$. Hence find $m$.
- Find the ratio in which point $P( x,\ 2)$ divides the line segment joining the points $A( 12,\ 5)$ and $B( 4,\ −3)$. Also find the value of $x$.
- If \( \mathrm{P}(9 a-2,-b) \) divides line segment joining \( \mathrm{A}(3 a+1,-3) \) and \( \mathrm{B}(8 a, 5) \) in the ratio \( 3: 1 \), find the values of \( a \) and \( b \).
- Find the ratio in which the point $P (x, 2)$ divides the line segment joining the points $A (12, 5)$ and $B (4, -3)$. Also, find the value of $x$.
- Convert the following ratios to percentage: $( a).\ 3:1,\ ( b).\ 2:3:5,\ ( c).\ 1:4,\ ( d).\ 1:2:5$.
- In what ratio does the point $(-4, 6)$ divide the line segment joining the points $A (-6, 10)$ and $B (3, -8)$?
- Solve the following equations:$(a).\ 4=5(p-2)$$(b).\ -4=5(p-2)$$(c).\ 16=4+3(t+2)$$(d).\ 4+5(p-1)=34$$(e).\ 0=16+4(m-6)$
- The following are the margins of victory in the matches of a football league : 3, 2, 1, 5, 6, 4, 2, 1, 3, 1, 2, 1, 4, 2, 5, 5, 6, 2, 3, 2 Find the mean of the data.

Advertisements