A tower stands vertically on the ground. From a point on the ground, $ 20 \mathrm{~m} $ away from the foot of the tower, the angle of elevation of the top of the tower is $ 60^{\circ} $. What is the height of the tower?
Given:
A tower stands vertically on the ground. From a point on the ground, \( 20 \mathrm{~m} \) away from the foot of the tower, the angle of elevation of the top of the tower is \( 60^{\circ} \).
To do:
We have to find the height of the tower.
Solution:
Let $AB$ be the tower and $C$ is the point \( 20 \mathrm{~m} \) away from the foot of the tower.
From the figure,
$\mathrm{BC}=20 \mathrm{~m}, \angle \mathrm{ACB}=60^{\circ}$
Let the height of the tower be $\mathrm{AB}=h \mathrm{~m}$
We know that,
$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$
$=\frac{\text { AB }}{BC}$
$\Rightarrow \tan 60^{\circ}=\frac{h}{20}$
$\Rightarrow \sqrt{3}=\frac{h}{20}$
$\Rightarrow h=20 \sqrt{3} \mathrm{~m}$
Therefore, the height of the tower is $20 \sqrt{3} \mathrm{~m}$.
Related Articles The angle of elevation of the top of a tower from a point on the ground, which is $30\ m$ away from the foot of the tower is $30^o$. Find the height of the tower.
A T.V. Tower stands vertically on a bank of a river. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is \( 60^{\circ} \). From a point \( 20 \mathrm{~m} \) away this point on the same bank, the angle of elevation of the top of the tower is \( 30^{\circ} \). Find the height of the tower and the width of the river.
The angle of elevation of the top of a tower from a point \( A \) on the ground is \( 30^{\circ} \). On moving a distance of 20 metres towards the foot of the tower to a point \( B \) the angle of elevation increases to \( 60^{\circ} \). Find the height of the tower and the distance of the tower from the point \( A \).
The angle of the elevation of the top of vertical tower from a point on the ground is 60°. From another point 10 m vertically above the first, its angle of elevation is 30°. Find the height of the tower.
A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is $60^o$. From another point $20\ m$ away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is $30^o$ (see the given figure). Find the height of the tower and the width of the canal."
The angle of elevation of the top of tower, from the point on the ground and at a distance of 30 m from its foot, is 30o. Find the height of tower.
A tower stands vertically on the ground. From a point on the ground which is 25 in away in the foot of the tower, the angle of the elevation of the top of the tower is found to be $45^{o}$. Then the height $(in\ meter)$ of the tower is:$( A) \ 25\sqrt{2}$$( B) \ 25\sqrt{3}$$( C) \ 25$$( D) \ 12.5$
A person observed the angle of elevation of the top of a tower as \( 30^{\circ} \). He walked \( 50 \mathrm{~m} \) towards the foot of the tower along level ground and found the angle of elevation of the top of the tower as \( 60^{\circ} \). Find the height of the tower.
The angle of elevation of the top of a vertical tower \( P Q \) from a point \( X \) on the ground is \( 60^{\circ} \). At a point \( Y, 40 \) m vertically above \( X \), the angle of elevation of the top is \( 45^{\circ} \). Calculate the height of the tower.
The angle of elevation of a tower from a point on the same level as the foot of the tower is \( 30^{\circ} \). On advancing 150 metres towards the foot of the tower, the angle of elevation of the tower becomes \( 60^{\circ} \). Show that the height of the tower is \( 129.9 \) metres (Use \( \sqrt{3}=1.732 \) ).
A flag-staff stands on the top of 5 m high tower. From a point on the ground, the angle of elevation of the top of the flag-staff is \( 60^{\circ} \) and from the same point, the angle of elevation of the top of the tower is \( 45^{\circ} \). Find the height of the flag-staff.
The angle of elevation of the top of the building from the foot of the tower is \( 30^{\circ} \) and the angle of the top of the tower from the foot of the building is \( 60^{\circ} \). If the tower is \( 50 \mathrm{~m} \) high, find the height of the building.
The angle of elevation of the top of a hill at the foot of a tower is \( 60^{\circ} \) and the angle of elevation of the top of the tower from the foot of the hill is \( 30^{\circ} \). If the tower is \( 50 \mathrm{~m} \) high, what is the height of the hill?
From a point on the ground the angles of elevation of the bottom and top of a transmission tower fixed at the top of \( 20 \mathrm{~m} \) high building are \( 45^{\circ} \) and \( 60^{\circ} \) respectively. Find the height of the transimission tower.
From the top of a \( 7 \mathrm{~m} \) high building, the angle of elevation of the top of a cable tower is \( 60^{\circ} \) and the angle of depression of its foot is \( 45^{\circ} . \) Determine the height of the tower.
Kickstart Your Career
Get certified by completing the course
Get Started