A park, in the shape of a quadrilateral $ \mathrm{ABCD} $, has $ \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=9 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m} $, $ \mathrm{CD}=5 \mathrm{~m} $ and $ \mathrm{AD}=8 \mathrm{~m} $. How much area does it occupy?
Given:
A park, in the shape of a quadrilateral $ABCD$ has $\angle C=90^o$, $AB=9\ m$, $BC=12\ m$, $CD=5\ m$ and $AD=8\ m$.
To do:
We have to find the area it occupies.
Solution:
In $\triangle BCD$, using Pythagoras theorem,
$BD^2=BC^2+CD^2$
$BD^2=(12)^2+(5)^2$
$BD^2=144+25=169$
$BD^2=(13)^2$
$BD=13\ m$
Therefore,
Area of $\triangle BCD=\frac{1}{2}\times12\times5=6\times5=30\ m^2$
In $\triangle ABD$,
$s=\frac{1}{2}(8+9+13)=15\ m$
Area of $\triangle ABD=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\triangle ABD=\sqrt{15(15-8)(15-9)(15-13)}$
Area of $\triangle ABD= \sqrt{15\times7\times6\times2}=6\sqrt{35}\ m^2$
Therefore,
Area of quadrilateral $ABCD=$ Area of $\triangle ABD+$ Area of $\triangle BCD$
Therefore,
Area of quadrilateral $ABCD=30+6\sqrt35=6(5+\sqrt{35})\ m^2$.
The area occupied by the park is $6(5+\sqrt{35})\ m^2$.
Related Articles Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
In a quadrilateral \( \mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=90^{\circ} \). Prove that \( \mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2} \) [Hint: Produce \( \mathrm{AB} \) and DC to meet at E]
The height of a person is \( 1.45 \mathrm{~m} \). Express it into \( \mathrm{c} \mathrm{m} \) and \( \mathrm{mm} \).
The length and breadth of three rectangles are as given below :(a) \( 9 \mathrm{~m} \) and \( 6 \mathrm{~m} \)(b) \( 17 \mathrm{~m} \) and \( 3 \mathrm{~m} \)(c) \( 4 \mathrm{~m} \) and \( 14 \mathrm{~m} \)Which one has the largest area and which one has the smallest?
Choose the correct answer from the given four options:In the figure below, \( \angle \mathrm{BAC}=90^{\circ} \) and \( \mathrm{AD} \perp \mathrm{BC} \). Then,(A) \( \mathrm{BD} \cdot \mathrm{CD}=\mathrm{BC}^{2} \)(B) \( \mathrm{AB}
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( A M=9 \) and \( C M=16 \), find the perimeter of \( \triangle \mathrm{ABC} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{B}=45^{\circ} \) and \( \mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm} \).
In \( \triangle \mathrm{ABC} \). the bisector of \( \angle \mathrm{A} \) intersects \( \mathrm{BC} \) at \( \mathrm{D} \). If \( \mathrm{AB}=8, \mathrm{AC}=10 \) and \( \mathrm{BC}=9 \), find \( \mathrm{BD} \) and \( \mathrm{DC} \).
Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
Find the areas of the rectangles whose sides are :(a) \( 3 \mathrm{~cm} \) and \( 4 \mathrm{~cm} \)(b) \( 12 \mathrm{~m} \) and \( 21 \mathrm{~m} \)(c) \( 2 \mathrm{~km} \) and \( 3 \mathrm{~km} \)(d) \( 2 \mathrm{~m} \) and \( 70 \mathrm{~cm} \)
In Fig. 7.21, \( \mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD} \) and \( \angle \mathrm{BAD}=\angle \mathrm{EAC} \). Show that \( \mathrm{BC}=\mathrm{DE} \)."\n
In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
Kickstart Your Career
Get certified by completing the course
Get Started