Given N questions and K options for each question, where 1 <= N <= 1000000000 and 1 <= K <= 1000000000. The task is to determine sum of total number of player who has attempted ith question for all 1 <= i <= k to win the game anyhow. You have to minimize the sum of total number of player and output it modulo 109+7.
Please note that any wrong answer leads to elimination of the player
If N = 5 and K = 2 then answer is 62.
#include <iostream> #include <cmath> #define MOD 1000000007 using namespace std; long long int power(long long a, long long b) { long long res = 1; while (b) { if (b & 1) { res = res * a; res = res % MOD; } b = b / 2; a = a * a; a = a % MOD; } return res; } long long getMinPlayer(long long n, long long k) { long long num = ((power(k, n) - 1) + MOD) % MOD; long long den = (power(k - 1, MOD - 2) + MOD) % MOD; long long ans = (((num * den) % MOD) * k) % MOD; return ans; } int main() { long long n = 5, k = 2; cout << "Minimum pairs = " << getMinPlayer(n, k) << endl; return 0; }
When you compile and execute above program. It generates following output −
Minimum pairs = 62