Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Maximum sum rectangle in a 2D matrix | DP-27 in C++
In this tutorial, we will be discussing a program to find maximum sum rectangle in a 2D matrix.
For this we will be provided with a matrix. Our task is to find out the submatrix with the maximum sum of its elements.
Example
#include<bits/stdc++.h>
using namespace std;
#define ROW 4
#define COL 5
//returning maximum sum recursively
int kadane(int* arr, int* start,
int* finish, int n) {
int sum = 0, maxSum = INT_MIN, i;
*finish = -1;
int local_start = 0;
for (i = 0; i < n; ++i) {
sum += arr[i];
if (sum < 0) {
sum = 0;
local_start = i + 1;
}
else if (sum > maxSum) {
maxSum = sum;
*start = local_start;
*finish = i;
}
}
if (*finish != -1)
return maxSum;
maxSum = arr[0];
*start = *finish = 0;
//finding the maximum element
for (i = 1; i < n; i++) {
if (arr[i] > maxSum){
maxSum = arr[i];
*start = *finish = i;
}
}
return maxSum;
}
void findMaxSum(int M[][COL]) {
int maxSum = INT_MIN, finalLeft, finalRight, finalTop, finalBottom;
int left, right, i;
int temp[ROW], sum, start, finish;
for (left = 0; left < COL; ++left) {
memset(temp, 0, sizeof(temp));
for (right = left; right < COL; ++right) {
for (i = 0; i < ROW; ++i)
temp[i] += M[i][right];
sum = kadane(temp, &start, &finish, ROW);
if (sum > maxSum) {
maxSum = sum;
finalLeft = left;
finalRight = right;
finalTop = start;
finalBottom = finish;
}
}
}
cout << "(Top, Left) (" << finalTop << ", " << finalLeft << ")" << endl;
cout << "(Bottom, Right) (" << finalBottom << ", " << finalRight << ")" << endl;
cout << "Max sum is: " << maxSum << endl;
}
int main() {
int M[ROW][COL] = {
{1, 2, -1, -4, -20},
{-8, -3, 4, 2, 1},
{3, 8, 10, 1, 3},
{-4, -1, 1, 7, -6}
};
findMaxSum(M);
return 0;
}
Output
(Top, Left) (1, 1) (Bottom, Right) (3, 3) Max sum is: 29
Advertisements