- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Maximum sum of nodes in Binary tree such that no two are adjacent | Dynamic Programming In C++
In this tutorial, we will be discussing a program to find maximum sum of nodes in Binary tree such that no two are adjacent using Dynamic Programming.
For this we will be provided with a binary tree. Our task is to find the subset having maximum sum such that no two nodes in the subset are directly connected using Dynamic Programming.
Example
#include <bits/stdc++.h> using namespace std; //finding diameter using dynamic programming void dfs(int node, int parent, int dp1[], int dp2[], list<int>* adj, int tree[]){ int sum1 = 0, sum2 = 0; for (auto i = adj[node].begin(); i != adj[node].end(); ++i) { if (*i == parent) continue; dfs(*i, node, dp1, dp2, adj, tree); sum1 += dp2[*i]; sum2 += max(dp1[*i], dp2[*i]); } dp1[node] = tree[node] + sum1; dp2[node] = sum2; } int main() { int n = 5; list<int>* adj = new list<int>[n + 1]; adj[1].push_back(2); adj[2].push_back(1); adj[1].push_back(3); adj[3].push_back(1); adj[2].push_back(4); adj[4].push_back(2); adj[2].push_back(5); adj[5].push_back(2); int tree[n + 1]; tree[1] = 10; tree[2] = 5; tree[3] = 11; tree[4] = 6; tree[5] = 8; int dp1[n + 1], dp2[n + 1]; memset(dp1, 0, sizeof dp1); memset(dp2, 0, sizeof dp2); dfs(1, 1, dp1, dp2, adj, tree); cout << "Maximum sum: " << max(dp1[1], dp2[1]) << endl; return 0; }
Output
Maximum sum: 25
Advertisements