
- C++ Basics
- C++ Home
- C++ Overview
- C++ Environment Setup
- C++ Basic Syntax
- C++ Comments
- C++ Data Types
- C++ Variable Types
- C++ Variable Scope
- C++ Constants/Literals
- C++ Modifier Types
- C++ Storage Classes
- C++ Operators
- C++ Loop Types
- C++ Decision Making
- C++ Functions
- C++ Numbers
- C++ Arrays
- C++ Strings
- C++ Pointers
- C++ References
- C++ Date & Time
- C++ Basic Input/Output
- C++ Data Structures
- C++ Object Oriented
- C++ Classes & Objects
- C++ Inheritance
- C++ Overloading
- C++ Polymorphism
- C++ Abstraction
- C++ Encapsulation
- C++ Interfaces
Maximum Binary Tree II in C++
Suppose we have a root node of a maximum tree: The maximum tree is a tree where every node has a value greater than any other value in its subtree. Suppose we have a method called construct(). This can construct a root from a list A. The construct() method is like −
If list A is empty, return null.
Otherwise, let A[i] be the largest element of the list A. Then create a root node with value A[i].
The left child of root will be construct([A[0], A[1], ..., A[i-1]])
The right child of root will be construct([A[i+1], A[i+2], ..., A[n - 1]]) [n is the length of A]
Return root.
Note that we were not given A directly, only a root node root = construct(A). Now suppose B is a copy of A with the value val added to it. It is guaranteed that B has unique values. We have to construct(B). If value is 5 and the input tree is like −
The output tree is like −
To solve this, we will follow these steps −
define one recursive method solve(). This is taking root and val
If tree is empty, then create a new node with value val, and return that node
if value of root < val, then
temp := new node whose value is val
left of temp := root
return temp
right of root := solve(right of root, val)
return root
Let us see the following implementation to get better understanding −
Example
#include <bits/stdc++.h> using namespace std; class TreeNode{ public: int val; TreeNode *left, *right; TreeNode(int data){ val = data; left = NULL; right = NULL; } }; void insert(TreeNode **root, int val){ queue<TreeNode*> q; q.push(*root); while(q.size()){ TreeNode *temp = q.front(); q.pop(); if(!temp->left){ if(val != NULL) temp->left = new TreeNode(val); else temp->left = new TreeNode(0); return; }else{ q.push(temp->left); } if(!temp->right){ if(val != NULL) temp->right = new TreeNode(val); else temp->right = new TreeNode(0); return; }else{ q.push(temp->right); } } } TreeNode *make_tree(vector<int> v){ TreeNode *root = new TreeNode(v[0]); for(int i = 1; i<v.size(); i++){ insert(&root, v[i]); } return root; } void tree_level_trav(TreeNode*root){ if (root == NULL) return; cout << "["; queue<TreeNode *> q; TreeNode *curr; q.push(root); q.push(NULL); while (q.size() > 1) { curr = q.front(); q.pop(); if (curr == NULL){ q.push(NULL); } else { if(curr->left) q.push(curr->left); if(curr->right) q.push(curr->right); if(curr == NULL || curr->val == 0){ cout << "null" << ", "; }else{ cout << curr->val << ", "; } } } cout << "]"<<endl; } class Solution { public: TreeNode* insertIntoMaxTree(TreeNode* root, int val) { if(!root)return new TreeNode(val); if(root->val < val){ TreeNode* temp = new TreeNode(val); temp->left = root; return temp; } root->right = insertIntoMaxTree(root->right, val); return root; } }; main(){ vector<int> v = {4,1,3,NULL,NULL,2}; TreeNode *root = make_tree(v); Solution ob; tree_level_trav(ob.insertIntoMaxTree(root, 5)); }
Input
[4,1,3,null,null,2] 5
Output
[5, 4, 1, 3, null, null, 2, ]
- Related Articles
- Maximum Binary Tree in C++
- Maximum Width of Binary Tree in C++
- Maximum Depth of Binary Tree in Python
- Binary Tree Maximum Path Sum in Python
- Maximum spiral sum in Binary Tree in C++
- Maximum Sum BST in Binary Tree in C++
- Maximum width of a binary tree in C++
- Maximum parent children sum in Binary tree in C++
- Find maximum level product in Binary Tree in C++
- Find maximum vertical sum in binary tree in C++
- Maximum Path Sum in a Binary Tree in C++
- Find maximum (or minimum) in Binary Tree in C++
- Find maximum level sum in Binary Tree in C++
- Binary Tree Longest Consecutive Sequence II in C++
- Closest Binary Search Tree Value II in C++
