- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In the given figure, $O$ is a point in the interior of a triangle ABC, $OD \perp BC, OE \perp AC$ and $OF \perp AB$. Show that $AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$.
"
Given:
$O$ is a point in the interior of a triangle ABC, $OD \perp BC, OE \perp AC$ and $OF \perp AB$.
To do:
We have to show that $OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$.
Solution:
Join $OA, OB$ and $OC$
In $\triangle \mathrm{AOF}$, by Pythagoras theorem,
$\mathrm{OA}^{2}=\mathrm{OF}^{2}+\mathrm{AF}^{2}$
$\mathrm{AF}^{2}=\mathrm{OA}^{2}-\mathrm{OF}^{2}$
In $\triangle \mathrm{BDO}$,
$\mathrm{OB}^{2}=\mathrm{BD}^{2}+\mathrm{OD}^{2}$
$\mathrm{BD}^{2}=\mathrm{OB}^{2}-\mathrm{OD}^{2}$
In $\triangle \mathrm{CEO}$,
$\mathrm{OC}^2=\mathrm{CE}^{2}+\mathrm{OE}^{2}$
$\mathrm{CE}^{2} =\mathrm{OC}^{2}-\mathrm{OE}^{2}$
Therefore,
$\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{OA}^{2}-\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}+\mathrm{COF}^{2}$.......(i)
$\mathrm{OA}^{2}-\mathrm{OF}^{2}+\mathrm{OB}^{2}-\mathrm{OD}^{2}+\mathrm{OC}^{2}-\mathrm{OE}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}$
$(\mathrm{OA}^{2}-\mathrm{OE}^{2})+(\mathrm{OC}^{2}-\mathrm{OD}^{2})+(\mathrm{OB}^{2}-\mathrm{OF}^{2})=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$............(ii)
From (i) and (ii), we get,
$\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$
Hence proved.- Related Articles
- In the given figure, $O$ is a point in the interior of a triangle ABC, $OD \perp BC, OE \perp AC$ and $OF \perp AB$. Show that (i) $OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$.(ii) $AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$."
- In the given figure, $ABC$ is a triangle in which $\angle ABC = 90^o$ and $AD \perp CB$. Prove that $AC^2 = AB^2 + BC^2 - 2BC \times BD$"
- In the given figure, $ABC$ is triangle in which $\angle ABC > 90^o$ and $AD \perp CB$ produced. Prove that $AC^2 = AB^2 + BC^2 + 2BC \times BD$"
- In the given figure, $AD$ is a median of a triangle $ABC$ and $AM \perp BC$. Prove that$\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$"
- In the given figure, ABD is a triangle right angled at A and $AC \perp BD$. Show that(i) $AB^2 = BC.BD$(ii) $AC^2 = BC.DC$(iii) $AD^2= BD.CD$"
- $\triangle ABD$ is a right triangle right-angled at A and $AC \perp BD$. Show that $\frac{AB^2}{AC^2}=\frac{BD}{DC}$.
- In the given figure, ABD is a triangle right angled at A and $AC \perp BD$. Show that $AC^2 = BC.DC$"
- In the given figure, $D$ is a point on hypotenuse $AC$ of $∆ABC, DM \perp BC$ and $DN \perp AB$. Prove that:$DN^2 = DM \times AN$"
- In $\triangle ABC, BD \perp AC$ and $CE \perp AB$. If $BD$ and $CE$ intersect at $O$, prove that $\angle BOC = 180^o-\angle A$.
- In the given figure, $AD$ is a median of a triangle $ABC$ and $AM \perp BC$. Prove that$\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^2$"
- In the given figure, ABD is a triangle right angled at A and $AC \perp BD$. Show that $AD^2= BD.CD$"
- In the given figure, $D$ is a point on hypotenuse $AC$ of $∆ABC, DM \perp BC$ and $DN \perp AB$. Prove that:(i) $DM^2 = DN \times MC$(ii) $DN^2 = DM \times AN$"
- $\triangle ABD$ is a right triangle right-angled at A and $AC \perp BD$. Show that $AB^2=BC.BD$
- In an equilateral $\triangle ABC$, $AD \perp BC$, prove that $AD^2=3BD^2$.
- $\triangle ABD$ is a right triangle right-angled at A and $AC \perp BD$. Show that $AC^2=BC.DC$
