In the given figure, $ABC$ is a triangle in which $\angle ABC = 90^o$ and $AD \perp CB$. Prove that $AC^2 = AB^2 + BC^2 - 2BC \times BD$
"
Given:
$ABC$ is a triangle in which $\angle ABC = 90^o$ and $AD \perp CB$.
To do:
We have to prove that $AC^2 = AB^2 + BC^2 - 2BC \times BD$
Solution:
In $\triangle \mathrm{ADB}$,
$\angle \mathrm{ADB}=90^{\circ}$
This implies, by Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$.........(i)
In $\triangle \mathrm{ADC}, \angle \mathrm{ADC}=90^{\circ}$
This implies, by Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
$=\mathrm{AD}^{2}+(\mathrm{BC}^{2}-\mathrm{BD})^{2}$
$=\mathrm{AD}^{2}+\mathrm{BC}^{2}+\mathrm{BD}^{2}-2 \mathrm{BC} \times \mathrm{BD})$
$=(\mathrm{AD}^{2}+\mathrm{BD}^{2})+\mathrm{BC}^2-2 \mathrm{BC} \times \mathrm{BD}$
$=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} \times \mathrm{BD}$ [From (i)]
Hence proved.
- Related Articles
- In the given figure, $ABC$ is triangle in which $\angle ABC > 90^o$ and $AD \perp CB$ produced. Prove that $AC^2 = AB^2 + BC^2 + 2BC \times BD$"
- In the given figure, $AD$ is a median of a triangle $ABC$ and $AM \perp BC$. Prove that$\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$"
- In the given figure, $AD$ is a median of a triangle $ABC$ and $AM \perp BC$. Prove that$\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^2$"
- In an equilateral $\triangle ABC$, $AD \perp BC$, prove that $AD^2=3BD^2$.
- In the given figure, $O$ is a point in the interior of a triangle ABC, $OD \perp BC, OE \perp AC$ and $OF \perp AB$. Show that $AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$."
- In $\triangle ABC, BD \perp AC$ and $CE \perp AB$. If $BD$ and $CE$ intersect at $O$, prove that $\angle BOC = 180^o-\angle A$.
- In the given figure, $AD$ is a median of a triangle $ABC$ and $AM \perp BC$. Prove that(i)$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^{2}$(ii) $\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^2$(iii) $\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$"
- In Fig. 3, $\angle ACB = 90^{o}$ and $CD \perp AB$, prove that $CD^{2}= BD ×AD$."\n
- ABC is an isosceles triangle with AC = BC. If $AB^2 = 2AC^2$. Prove that ABC is a right triangle.
- In $\triangle ABC$, side $AB$ is produced to $D$ so that $BD = BC$. If $\angle B = 60^o$ and $\angle A = 70^o$, prove that $AD > AC$.
- In $\triangle ABC$, if $\angle 1=\angle 2$, prove that $\frac{AB}{AC}=\frac{BD}{DC}$."\n
- In the given figure, $O$ is a point in the interior of a triangle ABC, $OD \perp BC, OE \perp AC$ and $OF \perp AB$. Show that (i) $OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$.(ii) $AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$."
- In the given figure, $D$ is a point on hypotenuse $AC$ of $∆ABC, DM \perp BC$ and $DN \perp AB$. Prove that:$DN^2 = DM \times AN$"
- In the given figure, E is a point on side CB produced of an isosceles triangle ABC with $AB = AC$. If $AD \perp BC$ and $EF \perp AC$, prove that $∆ABD \sim ∆ECF$."
- In the given figure, $D$ is a point on hypotenuse $AC$ of $∆ABC, DM \perp BC$ and $DN \perp AB$. Prove that:(i) $DM^2 = DN \times MC$(ii) $DN^2 = DM \times AN$"
Kickstart Your Career
Get certified by completing the course
Get Started