How to get top values of a numerical column of an R data frame in decreasing order?

To get the top values in an R data frame, we can use the head function and if we want the values in decreasing order then sort function will be required. Therefore, we need to use the combination of head and sort function to find the top values in decreasing order. For example, if we have a data frame df that contains a column x then we can find top 20 values of x in decreasing order by using head(sort(df$x,decreasing=TRUE),n=20). Example Consider the CO2 data frame in base R − Live Demo > str(CO2) Output Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame': 84 obs. of 5 variables:$ Plant : Ord.factor w/ 12 levels "Qn1"<"Qn2"<"Qn3"<..: 1 1 1 1 1 1 1 2 2 2 ...
$Type : Factor w/ 2 levels "Quebec","Mississippi": 1 1 1 1 1 1 1 1 1 1 ...$ Treatment: Factor w/ 2 levels "nonchilled","chilled": 1 1 1 1 1 1 1 1 1 1 ...
$conc : num 95 175 250 350 500 675 1000 95 175 250 ...$ uptake : num 16 30.4 34.8 37.2 35.3 39.2 39.7 13.6 27.3 37.1 ...
- attr(*, "formula")=Class 'formula' language uptake ~ conc | Plant
.. ..- attr(*, ".Environment")=
- attr(*, "outer")=Class 'formula' language ~Treatment * Type
.. ..- attr(*, ".Environment")=
- attr(*, "labels")=List of 2
..$x: chr "Ambient carbon dioxide concentration" ..$ y: chr "CO2 uptake rate"
- attr(*, "units")=List of 2
..$x: chr "(uL/L)" ..$ y: chr "(umol/m^2 s)"

Example

Live Demo

> head(CO2,20)

Output

Plant Type Treatment conc uptake
1 Qn1 Quebec nonchilled 95 16.0
2 Qn1 Quebec nonchilled 175 30.4
3 Qn1 Quebec nonchilled 250 34.8
4 Qn1 Quebec nonchilled 350 37.2
5 Qn1 Quebec nonchilled 500 35.3
6 Qn1 Quebec nonchilled 675 39.2
7 Qn1 Quebec nonchilled 1000 39.7
8 Qn2 Quebec nonchilled 95 13.6
9 Qn2 Quebec nonchilled 175 27.3
10 Qn2 Quebec nonchilled 250 37.1
11 Qn2 Quebec nonchilled 350 41.8
12 Qn2 Quebec nonchilled 500 40.6
13 Qn2 Quebec nonchilled 675 41.4
14 Qn2 Quebec nonchilled 1000 44.3
15 Qn3 Quebec nonchilled 95 16.2
16 Qn3 Quebec nonchilled 175 32.4
17 Qn3 Quebec nonchilled 250 40.3
18 Qn3 Quebec nonchilled 350 42.1
19 Qn3 Quebec nonchilled 500 42.9
20 Qn3 Quebec nonchilled 675 43.9

Extracting top 20 values of conc −

Live Demo

Output

[1] 45.5 44.3 43.9 42.9 42.4 42.1 41.8 41.4 41.4 40.6 40.3 39.7 39.6 39.2 38.9
[16] 38.8 38.7 38.6 38.1 37.5

Example

Consider the iris data frame in base R −

Live Demo

> str(iris)

Output

'data.frame': 150 obs. of 5 variables:
$Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

Output

[1] 7.9 7.7 7.7 7.7 7.7 7.6 7.4 7.3 7.2 7.2 7.2 7.1 7.0 6.9 6.9 6.9 6.9 6.8 6.8
[20] 6.8 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.6 6.6 6.5 6.5 6.5 6.5 6.5 6.4 6.4 6.4
[39] 6.4 6.4 6.4 6.4 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3

Live Demo

> head(sort(iris$Petal.Length,decreasing=TRUE),n=50) Output [1] 6.9 6.7 6.7 6.6 6.4 6.3 6.1 6.1 6.1 6.0 6.0 5.9 5.9 5.8 5.8 5.8 5.7 5.7 5.7 [20] 5.6 5.6 5.6 5.6 5.6 5.6 5.5 5.5 5.5 5.4 5.4 5.3 5.3 5.2 5.2 5.1 5.1 5.1 5.1 [39] 5.1 5.1 5.1 5.1 5.0 5.0 5.0 5.0 4.9 4.9 4.9 4.9 Example Consider the mtcars data in base R − Live Demo > str(mtcars) Output 'data.frame': 32 obs. of 11 variables:$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$cyl : num 6 6 4 6 8 6 8 4 4 6 ...$ disp: num 160 160 108 258 360 ...
$hp : num 110 110 93 110 175 105 245 62 95 123 ...$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$wt : num 2.62 2.88 2.32 3.21 3.44 ...$ qsec: num 16.5 17 18.6 19.4 17 ...
$vs : num 0 0 1 1 0 1 0 1 1 1 ...$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$gear: num 4 4 4 3 3 3 3 4 4 4 ...$ carb: num 4 4 1 1 2 1 4 2 2 4 ...

Example

Live Demo

> head(mtcars,20)

Output

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

Example

Live Demo

> head(sort(mtcars\$wt,decreasing=TRUE),n=20)

Output

[1] 5.424 5.345 5.250 4.070 3.845 3.840 3.780 3.730 3.570 3.570 3.520 3.460
[13] 3.440 3.440 3.440 3.435 3.215 3.190 3.170 3.150

Updated on: 04-Jan-2021

6K+ Views