How to Format a Hard Disk on Linux OS

In this article, we will learn how to add a new hard disk drive to Linux OS, Assuming the drive is visible to the BIOS, it should automatically be detected by the operating system. Typically, the disk drives in a system is assigned to a device name beginning with ‘hd’ or ‘sd’ followed by a letter to indicate the device number. For example, the first device might be /dev/sda, the second /dev/sdb and so on.

The following is the output from a system with only one physical disk drive.

# ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2 /dev/sdb

This shows that the disk drive represented by /dev/sda is itself divided into 2 partitions, represented by /dev/sda1 and /dev/sda2. As shown above, the new hard drive has been assigned to the device file /dev/sdb. Currently the drive has no partitions shown (because we have yet to create any).

At this point we have a choice of creating partitions and file systems on the new drive and mounting them for access or adding the disk as a physical volume as part of a volume group. To perform the former continues with this article.

Creating Linux Partitions

The next step is to create one or more Linux partitions on the new disk drive. This is achieved using the fdisk utility which takes as a command-line argument the device to be partitioned

# fdisk /dev/sdb
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel
Building a new DOS disklabel with disk identifier 0xd1082b01.
Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)
WARNING: DOS-compatible mode is deprecated. It's strongly recommended to
   switch off the mode (command 'c') and change display units to
   sectors (command 'u').

Command (m for help):
As instructed, switch off DOS compatible mode and change the units to sectors by entering the c and u commands:
Command (m for help): c
DOS Compatibility flag is not set
Command (m for help): u
Changing display/entry units to sectors
In order to view the current partitions on the disk enter the p command:
Command (m for help): p
Disk /dev/sdb: 34.4 GB, 34359738368 bytes
255 heads, 63 sectors/track, 4177 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0xd1082b01
   Device Boot    Start    End    Blocks    Id    System

As we can see from the above fdisk output the disk currently has no partitions because it is a previously unused disk. The next step is to create a new partition on the disk, a task which is performed by entering n (for new partition) and p (for primary partition):

Command (m for help): n
Command action
   e extended
   p primary partition (1-4)
Partition number (1-4):

In this example, we plan to create one partition which will be partition 1. Next, we need to specify where the partition will begin and end. Since this is the first partition we need it to start at the first available sector and since we want to use the entire disk we specify the last sector as the end.

Note: If you wish to create multiple partitions you can specify the size of each partition by sectors, bytes, kilobytes or megabytes.

Partition number (1-4): 1
First sector (2048-67108863, default 2048):
Using default value 2048
Last sector, +sectors or +size{K,M,G} (2048-67108863, default 67108863):
Using default value 67108863

Now that we have specified the partition we need to write it to the disk using the w command:
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.

If we now look at the devices again, we will see that the new partition is visible as /dev/sdb1:

# ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2 /dev/sdb /dev/sdb1

The next step is to create a filesystem on our new partition.

Creating a File System

We now have a new disk installed, it is visible to RHEL 6 and we have configured a Linux partition on the disk. The next step is to create a Linux file system on the partition so that the operating system can use it to store files and data. The easiest way to create a file system on a partition is to use the mkfs.ext4 utility which takes as arguments the label and the partition device:

# /sbin/mkfs.ext4 -L /backup /dev/sdb1
mke2fs 1.41.12 (17-May-2010)
Filesystem label=/backup
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
2097152 inodes, 8388352 blocks
419417 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=4294967296
256 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,4096000, 7962624
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem checks automatically after 36 mounts or 180 days, whichever comes first.
Use tune2fs -c or -i to override.

Mounting a File System

Now that we have created a new filesystem on the Linux partition of our new disk drive, we need to mount it so that it is accessible. In order to do this we need to create a mount point. A mount point is simply a directory or folder into which the filesystem will be mounted. For the purposes of this example, we will create a /data directory to match our filesystem label (although it is not necessary that these values match):

# mkdir /data

The filesystem may then be manually mounted using the mount command:

# mount /dev/sdb1 /data

Running the mount command with no arguments shows us all currently mounted filesystems (including our new filesystem):

# mount
/dev/mapper/vg_rhel6-lv_root on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw,rootcontext="system_u:object_r:tmpfs_t:s0")
/dev/sda1 on /boot type ext4 (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
/dev/sr0 on /media/RHEL_6.0 x86_64 Disc 1 type iso9660 (ro,nosuid,nodev,uhelper=udisks,uid=500,gid=500,iocharset=utf8,mode=0400,dmode=0500)
/dev/sdb1 on /data type ext4 (rw)

Configuring Linux for Automatically Mount a Filesystem

In order to configure the system so that the new disk is automatically mounted at the time boot we need an entry to be added to the /etc/fstab file.

The below is the sample configuration file which shows an fstab file configured to auto mount our /backup partition:

/dev/mapper/vg_rhel6-lv_root / ext4 defaults 1 1
UUID=4a9886f5-9545-406a-a694-04a60b24df84 /boot ext4 defaults 1 2
/dev/mapper/vg_rhel6-lv_swap swap swap defaults 0 0

tmpfs          /dev/shm     tmpfs     defaults          0 0
devpts         /dev/pts     devpts    gid=5,mode=620    0 0
sysfs          /sys         sysfs     defaults          0 0
proc           /proc        proc      defaults          0 0
LABEL=/backup  /backup      ext4      defaults          1 2

Conclusion: After this configuration and setup we can able to add a new hard disk drive, format & mount also able to auto mount the new drive even after the reboot of the system. Which will help the users or system administrators provide the Linux OS with more free space.

Updated on: 27-Jan-2020


Kickstart Your Career

Get certified by completing the course

Get Started