

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to find the mean of very small numbers in numeric form that are represented with scientific notation in R?
If we find the mean of scientific numbers then the result will be also in scientific notation. We can get rid of this problem by using options(scipen=999), once we will use this code in R console all the inputs that are in scientific notation will be converted to normal numeric form, including any calculation and if we want to go back to the scientific notation then options(scipen=0) can be used.
Example
> x1<-c(4.225867e-23,3.463125e-24,2.480971e-35,1.660538e-26,1.074064e-37,6.829168e-29,4.305051e-21,2.702241e-27,1.692533e-29,1.058970e-29,6.622117e-34,4.139935e-36,2.587807e-37,1.617488e-38,1.010964e-39,6.318630e-21,3.949177e-22,2.468246e-23,1.542657e-24,9.641616e-26,6.026013e-27,3.766259e-28,2.353912e-29,1.471195e-30,9.194971e-32) > mean(x1)
Output
[1] 4.436267e-22
Example
> options(scipen=999) > mean(x1)
Output
[1] 0.0000000000000000000004436267
Example
> x2<-sample(c(4.225867e-23,3.463125e-24,2.480971e-35,1.660538e-26,1.074064e-37,6.829168e-29,4.305051e-21,2.702241e-27,1.692533e-29,1.058970e-29,6.622117e-34,4.139935e-36,2.587807e-37,1.617488e-38,1.010964e-39,6.318630e-21,3.949177e-22,2.468246e-23,1.542657e-24,9.641616e-26,6.026013e-27,3.766259e-28,2.353912e-29,1.471195e-30,9.194971e-32),50,replace=TRUE) > x2
Output
[1] 0.000000000000000000000000000000000000001010964 [2] 0.000000000000000000000000000068291679999999998 [3] 0.000000000000000000000000006026013000000000181 [4] 0.000000000000000000000000002702241000000000107 [5] 0.000000000000000000000042258669999999998179163 [6] 0.000000000000000000000000000000091949710000000 [7] 0.000000000000000000000000000000000000107406400 [8] 0.000000000000000000000000000000091949710000000 [9] 0.000000000000000000000003463124999999999951636 [10] 0.000000000000000000004305051000000000103323794 [11] 0.000000000000000000000001542657000000000059366 [12] 0.000000000000000000000000002702241000000000107 [13] 0.000000000000000000000000000001471195000000000 [14] 0.000000000000000000000000006026013000000000181 [15] 0.000000000000000000000000000000000000001010964 [16] 0.000000000000000000000000000000000000107406400 [17] 0.000000000000000000000001542657000000000059366 [18] 0.000000000000000000000000096416159999999999745 [19] 0.000000000000000000000000096416159999999999745 [20] 0.000000000000000000000000000000091949710000000 [21] 0.000000000000000000000000000001471195000000000 [22] 0.000000000000000000000000016605380000000000407 [23] 0.000000000000000000000000000023539120000000001 [24] 0.000000000000000000006318630000000000014343665 [25] 0.000000000000000000000000000000000000016174880 [26] 0.000000000000000000000003463124999999999951636 [27] 0.000000000000000000000000000000000000016174880 [28] 0.000000000000000000000000000068291679999999998 [29] 0.000000000000000000004305051000000000103323794 [30] 0.000000000000000000000042258669999999998179163 [31] 0.000000000000000000000000000000000662211700000 [32] 0.000000000000000000000024682460000000000627761 [33] 0.000000000000000000000024682460000000000627761 [34] 0.000000000000000000000000000068291679999999998 [35] 0.000000000000000000000394917700000000012347870 [36] 0.000000000000000000000000000000000024809710000 [37] 0.000000000000000000000000000068291679999999998 [38] 0.000000000000000000000000000000000000001010964 [39] 0.000000000000000000000042258669999999998179163 [40] 0.000000000000000000000000000023539120000000001 [41] 0.000000000000000000000024682460000000000627761 [42] 0.000000000000000000006318630000000000014343665 [43] 0.000000000000000000000000000000000000016174880 [44] 0.000000000000000000000000000010589700000000000 [45] 0.000000000000000000000000000000091949710000000 [46] 0.000000000000000000004305051000000000103323794 [47] 0.000000000000000000000000000000000024809710000 [48] 0.000000000000000000000000000010589700000000000 [49] 0.000000000000000000000001542657000000000059366 [50] 0.000000000000000000000000006026013000000000181
Example
> mean(x2)
Output
[1] 0.0000000000000000000005231988
Example
> x3<-sample(c(4.225867e-23,3.463125e-24,2.480971e-35,1.660538e-26,1.074064e-37,6.829168e-29,4.305051e-21),50,replace=TRUE) > x3
Output
[1] 0.0000000000000000000043050510000000001033238 [2] 0.0000000000000000000043050510000000001033238 [3] 0.0000000000000000000000034631249999999999516 [4] 0.0000000000000000000043050510000000001033238 [5] 0.0000000000000000000000000000682916800000000 [6] 0.0000000000000000000043050510000000001033238 [7] 0.0000000000000000000000034631249999999999516 [8] 0.0000000000000000000000034631249999999999516 [9] 0.0000000000000000000000034631249999999999516 [10] 0.0000000000000000000043050510000000001033238 [11] 0.0000000000000000000000422586699999999981792 [12] 0.0000000000000000000043050510000000001033238 [13] 0.0000000000000000000000422586699999999981792 [14] 0.0000000000000000000000000000000000001074064 [15] 0.0000000000000000000000000000000000001074064 [16] 0.0000000000000000000043050510000000001033238 [17] 0.0000000000000000000043050510000000001033238 [18] 0.0000000000000000000043050510000000001033238 [19] 0.0000000000000000000000000000000000248097100 [20] 0.0000000000000000000000000000682916800000000 [21] 0.0000000000000000000000000000682916800000000 [22] 0.0000000000000000000000000166053800000000004 [23] 0.0000000000000000000000034631249999999999516 [24] 0.0000000000000000000000000000000000001074064 [25] 0.0000000000000000000000000000682916800000000 [26] 0.0000000000000000000000000166053800000000004 [27] 0.0000000000000000000000000000000000001074064 [28] 0.0000000000000000000000000000000000001074064 [29] 0.0000000000000000000000000000000000248097100 [30] 0.0000000000000000000000000000000000248097100 [31] 0.0000000000000000000000000000000000001074064 [32] 0.0000000000000000000000000000682916800000000 [33] 0.0000000000000000000000034631249999999999516 [34] 0.0000000000000000000000000166053800000000004 [35] 0.0000000000000000000043050510000000001033238 [36] 0.0000000000000000000000000000000000001074064 [37] 0.0000000000000000000000000000000000001074064 [38] 0.0000000000000000000000000166053800000000004 [39] 0.0000000000000000000000034631249999999999516 [40] 0.0000000000000000000000000000682916800000000 [41] 0.0000000000000000000000000000000000248097100 [42] 0.0000000000000000000000000000000000248097100 [43] 0.0000000000000000000000034631249999999999516 [44] 0.0000000000000000000000000000000000001074064 [45] 0.0000000000000000000000000000682916800000000 [46] 0.0000000000000000000000000000000000001074064 [47] 0.0000000000000000000000000000000000001074064 [48] 0.0000000000000000000000000000000000001074064 [49] 0.0000000000000000000000000166053800000000004 [50] 0.0000000000000000000000000166053800000000004
Example
> mean(x3)
Output
[1] 0.0000000000000000000008632566
- Related Questions & Answers
- How to deactivate scientific notation of numbers in R?
- How to remove scientific notation form base R plot?
- How to display numbers in scientific notation in Java?
- Prevent scientific notation in matplotlib.pyplot
- How to change the font size of scientific notation in Matplotlib?
- How to convert a factor that is represented by numeric values to integer or numeric variable in R?
- How to display xtable values in scientific form in R?
- How to replace NA values in columns of an R data frame form the mean of that column?
- How to find the standard error of mean in R?
- How to find the mean of list elements in R?
- How to repress scientific notation in factorplot Y-axis in Seaborn / Matplotlib?
- How to get the mean of columns that contains numeric values of a dataframe in Pandas Python?
- How to find the mean of three-dimensional array in R?
- How to find the groupwise cumulative mean in R?
- How to remove scientific notation from a Matplotlib log-log plot?
Advertisements