- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to apply functions element-wise in a dataframe in Python?
It may sometimes be required to apply certain functions along the elements of the dataframe. All the functions can’t be vectorised. This is where the function ‘applymap’ comes into picture.
This takes a single value as input and returns a single value as output.
Example
import pandas as pd import numpy as np my_df = pd.DataFrame(np.random.randn(5,5),columns=['col_1','col_2','col_3', 'col_4', 'col_5']) print("The dataframe generated is ") print(my_df) my_df.applymap(lambda x:x*11.45) print("Using the applymap function") print(my_df.apply(np.mean))
Output
The dataframe generated is col_1 col_2 col_3 col_4 col_5 0 -0.671510 -0.860741 0.886484 0.842158 2.182341 1 -1.355763 0.247240 -0.653630 -0.278095 0.163044 2 -0.816203 1.664006 1.555648 1.625890 -0.412338 3 -1.013273 -1.565076 1.297014 -0.303504 -1.623573 4 0.725949 -0.077588 -0.886957 0.433478 -0.300151 Using the applymap function col_1 -0.626160 col_2 -0.118432 col_3 0.439712 col_4 0.463985 col_5 0.001865 dtype: float64
Explanation
The required libraries are imported, and given alias names for ease of use.
Dataframe is created by using the ‘random’ function and creating data that has 5 rows and 5 columns.
The names of the columns are also defined within a list while defining the dataframe values.
The dataframe is printed on the console.
The ‘applymap’ function is applied on the elements of the dataframe.
The function definition is a lambda function written inside the ‘applymap’ function.
The data is printed on the console.