- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

Tensorflow can be used to confirm that the saved model can be reloaded by using the ‘load_model’ and using the ‘predict’ method. The reloaded model can be used predict the data.

**Read More:**
What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?

A neural network that contains at least one layer is known as a convolutional layer. We can use the Convolutional Neural Network to build learning model.

The intuition behind transfer learning for image classification is, if a model is trained on a large and general dataset, this model can be used to effectively serve as a generic model for the visual world. It would have learned the feature maps, which means the user won’t have to start from scratch by training a large model on a large dataset.

TensorFlow Hub is a repository that contains pre-trained TensorFlow models. TensorFlow can be used to fine-tune learning models.

We will understand how to use models from TensorFlow Hub with tf.keras, use an image classification model from TensorFlow Hub. Once this is done, transfer learning can be performed to fine-tune a model for customized image classes. This is done by using a pretrained classifier model to take an image and predict what it is. This can be done without needing any training.

We are using the Google Colaboratory to run the below code. Google Colab or Colaboratory helps run Python code over the browser and requires zero configuration and free access to GPUs (Graphical Processing Units). Colaboratory has been built on top of Jupyter Notebook.

print("Check to see if it gives the same results") reloaded = tf.keras.models.load_model(export_path) result_batch = model.predict(image_batch) reloaded_result_batch = reloaded.predict(image_batch) abs(reloaded_result_batch - result_batch).max()

Code credit −https://www.tensorflow.org/tutorials/images/transfer_learning_with_hub

Check to see if it gives the same results 0.0

We have to first confirm that the saved model can be reloaded.

Once this is done, we have to confirm that the same results are obtained with the saved model.

- Related Questions & Answers
- How can Tensorflow be used to visualize the results of the model?
- How can Tensorflow be used to export the model so that it can be used later?
- How can Tensorflow be used to plot the results using Python?
- How can Tensorflow be used to train and compile the augmented model?
- How can Tensorflow be used to compile the model using Python?
- How can Tensorflow be used to train the model using Python?
- How can Tensorflow be used with Estimators to optimize the model?
- How can Tensorflow be used to visualize training results using Python?
- How can TensorFlow be used to configure the IMDB dataset to give good performance and create a model?
- How can Tensorflow be used to compile and fit the model using Python?
- After normalization, how can Tensorflow be used to train and build the model?
- How can Tensorflow be used to train and compile a CNN model?
- How can Tensorflow and pre-trained model be used to compile the model using Python?
- How can Keras be used to reload a fresh model from the saved model using Python?
- How can Tensorflow be used to compare the linear model and the Convolutional model using Python?

Advertisements