How can Keras be used to save the entire model using Python?

Tensorflow is a machine learning framework that is provided by Google. It is an open−source framework used in conjunction with Python to implement algorithms, deep learning applications and much more. It is used in research and for production purposes.

Keras is a deep learning API, which is written in Python. It is a high-level API that has a productive interface that helps solve machine learning problems. It runs on top of Tensorflow framework. It was built to help experiment in a quick manner. It is highly scalable, and comes with cross platform abilities. This means Keras can be run on TPU or clusters of GPUs. Keras models can also be exported to run in a web browser or a mobile phone as well.

Keras is already present within the Tensorflow package. It can be accessed using the below line of code −

import tensorflow
from tensorflow import keras

We are using the Google Colaboratory to run the below code. Google Colab or Colaboratory helps run Python code over the browser and requires zero configuration and free access to GPUs (Graphical Processing Units). Colaboratory has been built on top of Jupyter Notebook. Following is the code


print("A new model instance is created")
model = create_model()
print("The model is fit to the training data"), train_labels, epochs=5)
print("The model is saved")
!mkdir -p saved_model'saved_model/my_model')
ls saved_model

Code credit −



  • The new model is created using the ‘create_model’ method.

  • This new model is fit to the training data.

  • A new directory is created to store the new model.

  • Once the fitting is done, it is saved using the ‘save’ method.

  • The path to the saved model is displayed on the console.

Updated on: 21-Jan-2021


Kickstart Your Career

Get certified by completing the course

Get Started