
- Python Basic Tutorial
- Python - Home
- Python - Overview
- Python - Environment Setup
- Python - Basic Syntax
- Python - Comments
- Python - Variables
- Python - Data Types
- Python - Operators
- Python - Decision Making
- Python - Loops
- Python - Numbers
- Python - Strings
- Python - Lists
- Python - Tuples
- Python - Dictionary
- Python - Date & Time
- Python - Functions
- Python - Modules
- Python - Files I/O
- Python - Exceptions
Generate a Vandermonde matrix of the Hermite polynomial with complex array of points in Python
To generate a Vandermonde matrix of the Hermite polynomial, use the chebyshev.hermvander() in Python Numpy. The method returns the pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape + (deg + 1,), where The last index is the degree of the corresponding Hermite polynomial. The dtype will be the same as the converted x.
The parameter, x returns an Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is converted to a 1-D array. The parameter, deg is the degree of the resulting matrix.
Steps
At first, import the required library −
import numpy as np from numpy.polynomial import hermite as H
Create an array −
x = np.array([-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j])
Display the array −
print("Our Array...\n",x)
Check the Dimensions −
print("\nDimensions of our Array...\n",x.ndim)
Get the Datatype −
print("\nDatatype of our Array object...\n",x.dtype)
Get the Shape −
print("\nShape of our Array object...\n",x.shape)
To generate a Vandermonde matrix of the Hermite polynomial, use the chebyshev.hermvander() −
print("\nResult...\n",H.hermvander(x, 2))
Example
import numpy as np from numpy.polynomial import hermite as H # Create an array x = np.array([-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j]) # Display the array print("Our Array...\n",x) # Check the Dimensions print("\nDimensions of our Array...\n",x.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",x.dtype) # Get the Shape print("\nShape of our Array object...\n",x.shape) # To generate a Vandermonde matrix of the Hermite polynomial, use the chebyshev.hermvander() in Python Numpy print("\nResult...\n",H.hermvander(x, 2))
Output
Our Array... [-2.+2.j -1.+2.j 0.+2.j 1.+2.j 2.+2.j] Dimensions of our Array... 1 Datatype of our Array object... complex128 Shape of our Array object... (5,) Result... [[ 1. +0.j -4. +4.j -2.-32.j] [ 1. +0.j -2. +4.j -14.-16.j] [ 1. +0.j 0. +4.j -18. +0.j] [ 1. +0.j 2. +4.j -14.+16.j] [ 1. +0.j 4. +4.j -2.+32.j]]
- Related Articles
- Generate a Pseudo Vandermonde matrix of the Hermite polynomial with complex array of points coordinates in Python
- Generate a Vandermonde matrix of the Hermite polynomial with float array of points in Python
- Generate a Vandermonde matrix of the Chebyshev polynomial with complex array of points in Python
- Generate a Vandermonde matrix of the Laguerre polynomial with complex array of points in Python
- Generate a Vandermonde matrix of the Hermite_e polynomial with complex array of points in Python
- Generate a Vandermonde matrix of the Legendre polynomial with complex array of points in Python
- Generate a Pseudo Vandermonde matrix of the Hermite polynomial and x, y, z complex array of points in Python
- Generate a Pseudo Vandermonde matrix of the Hermite polynomial with float array of points coordinates in Python
- Generate a Pseudo Vandermonde matrix of the Hermite_e polynomial with complex array of points coordinates in Python
- Generate a Vandermonde matrix of the Hermite polynomial in Python
- Generate a Pseudo Vandermonde matrix of the Hermite polynomial in Python
- Generate a Vandermonde matrix of given degree with complex array of points in Python
- Generate a Pseudo Vandermonde matrix of Hermite polynomial and x, y, z floating array of points in Python
- Generate a Pseudo Vandermonde matrix of the Laguerre polynomial and x, y complex array of points in Python
- Generate a Pseudo Vandermonde matrix of the Legendre polynomial and x, y complex array of points in Python
