- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Generate a Pseudo Vandermonde matrix of the Hermite_e polynomial with complex array of points coordinates in Python
To generate a pseudo Vandermonde matrix of the Hermite_e polynomial, use the hermite_e.hermevander2d() in Python Numpy. The method returns the pseudo-Vandermonde matrix. The parameter, x, y are an array of point coordinates, all of the same shape. The dtypes will be converted to either float64 or complex128 depending on whether any of the elements are complex. Scalars are converted to 1-D arrays. The parameter, deg is the list of maximum degrees of the form [x_deg, y_deg].
Steps
At first, import the required library −
import numpy as np from numpy.polynomial import hermite as H
Create arrays of point coordinates, all of the same shape using the numpy.array() method −
x = np.array([-2.+2.j, -1.+2.j]) y = np.array([1.+2.j, 2.+2.j])
Display the arrays −
print("Array1...\n",x) print("\nArray2...\n",y)
Display the datatype −
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype)
Check the Dimensions of both the arrays −
print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim)
Check the Shape of both the arrays −
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape)
To generate a pseudo Vandermonde matrix of the Hermite_e polynomial, use the hermite_e.hermevander2d() in Python Numpy −
x_deg, y_deg = 2, 3 print("\nResult...\n",H.hermevander2d(x,y, [x_deg, y_deg]))
Example
import numpy as np from numpy.polynomial import hermite_e as H # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([-2.+2.j, -1.+2.j]) y = np.array([1.+2.j, 2.+2.j]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) # Check the Dimensions of both the array print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) # Check the Shape of both the array print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) # To generate a pseudo Vandermonde matrix of the Hermite_e polynomial, use the hermite_e.hermevander2d() in Python Numpy # The method returns the pseudo-Vandermonde matrix. x_deg, y_deg = 2, 3 print("\nResult...\n",H.hermevander2d(x,y, [x_deg, y_deg]))
Output
Array1... [-2.+2.j -1.+2.j] Array2... [1.+2.j 2.+2.j] Array1 datatype... complex128 Array2 datatype... complex128 Dimensions of Array1... 1 Dimensions of Array2... 1 Shape of Array1... (2,) Shape of Array2... (2,) Result... [[ 1. +0.j 1. +2.j -4. +4.j -14. -8.j -2. +2.j -6. -2.j 0. -16.j 44. -12.j -1. -8.j 15. -10.j 36. +28.j -50.+120.j] [ 1. +0.j 2. +2.j -1. +8.j -22. +10.j -1. +2.j -6. +2.j -15. -10.j 2. -54.j -4. -4.j 0. -16.j 36. -28.j 128. +48.j]]