- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Evaluating MLOps Platform
An MLOps platform's goal is to automate tasks associated with developing ML-enabled systems and to make it simpler to benefit from ML. Building ML models and gaining value from them requires several stages, such as investigating and cleaning the data, carrying out a protracted training process, and deploying and monitoring a model. An MLOps platform can be considered a group of tools for carrying out the duties necessary to reap the benefits of ML.
Not all businesses that benefit from machine learning use an MLOps platform. Without a platform, it is absolutely possible to put models into production. Choosing and introducing a platform for a particular project might occasionally be an unnecessary expense. Where there are several initiatives, platforms tend to be most helpful since sharing talents and knowledge is made simpler.
How do you evaluate the platforms?
The vast majority of tools, including ClearML, Censius, neptune.ai, Dataiku, Datarobot, Iguazio, Sagemaker, Valohai, etc., that market themselves as end-to-end MLOps platforms cover the three domains of tracking, versioning, ML pipeline, and model deployment. While MLflow, Flyte, Metaflow, and Seldon each concentrate on a particular stage of the model lifetime, end-to-end MLOps platforms integrate most of the model lifecycle into a single process.
Comparing features is one method of comparing MLOps platforms. While the top-level features of many of these platforms are nearly identical, the actual implementation of those functions varies greatly. Consequently, one might contrast the platforms based on how they present themselves. A different approach would be to determine whether you should create something from scratch or purchase an existing MLOps platform. The best response will depend on your use case and team.
Factors for Comparison of MLOPs Platforms
Following are the various factors for Comparison of MLOPs Platforms
Based on traditional ML and deep learning
Traditional machine learning-focused products are created for structured data. MLOps platforms for deep learning, on the other hand, are designed to handle enormous amounts of unstructured data, such as photos, videos, or audio. We have solutions like Metaflow, which excels at handling tabular data, and Valohai, a deep learning platform with a strong emphasis on machine orchestration.
Based on supported libraries
To create ML models, data scientists use a variety of computer languages, libraries, and frameworks. As a result, we require an MLOps platform that is compatible with the project's libraries. Let’s pick up the top libraries of ML and then lists out the platform that is compatible with that respective library.
Jupyter − Dataiku, KubeFlow, Valohai
Scikit-learn − Dataiku, DataRobot, KubeFlow
Tensorflow − Dataiku, H2O, DataRobot, KubeFlow, Valohai
Keras − Dataiku, DataRobot, Valohai
Pytorch − H2O, DataRobot, KubeFlow, Valohai
XGBoost − Dataiku, H2O, DataRobot, KubeFlow
Based on Productionization and Exploration
Platforms that are more geared toward exploration place a greater emphasis on data analytics, experiment tracking, and working in notebooks, whereas platforms that are more geared toward productization give priority to machine learning pipelines, automation, and model deployment. Seldon, Flyte, and Metaflow are production-oriented.
Flyte and Metaflow concentrate on creating production pipelines, but Seldon is solely for model deployment and versioning, not model training. While Dataiku has a lot to offer in terms of data analysis, MLFlow is mainly concentrated on experiment tracking.
Based on CLI (Command-line interface) and GUI (Graphical-user interface)
Some MLOps platforms concentrate on features that require less engineering know-how to develop and deploy ML models. They concentrate on the GUI, a visual tool that enables access through a web client. Other platforms cater to highly qualified data scientists with engineering backgrounds. When connecting these platforms with pre-existing tools, they frequently use a command-line interface (CLI) or API; for skilled users, a web user interface (UI) may not be crucial.
Below is the list of some MLOps platforms that are GUI or CLI-oriented −
GUI − Dataiku, H2O, DataRobot, Iguazio
CLI − Kubeflow, Valohai
Based on end-to-end platform and specialized platform
The majority of the MLOps platforms mentioned in this article take an end-to-end approach to MLOps, which means that users should be able to automatically train, test, and deploy models on a single platform.
In this comparison, Seldon, Flyte, and Metaflow stand out because of their greater specialization in either pipelines or deployment. Except for AutoML use cases, Datarobot is not truly end-to-end, and MLFlow is only just beginning to transition to an end-to-end approach.
Conclusion
There are numerous platforms available where you can create, train, use, and manage a machine-learning model. Although most platforms share many aspects and are closely related to one another, there are major distinctions.
For beginners, some platforms are incredibly simple. Every platform has advantages and disadvantages. It's a personal decision because your model accuracy will be similar regardless of the platform you use. Although there are several workflows, you can import your algorithm. Pricing is a key issue here because most of them offer a pay-as-you-go option that lets you just pay for the features you actually utilize.
- Related Articles
- What is MLOps?
- MLOps vs DevOps
- Workflow of MLOps
- Who is MLOps Engineer?
- Best MLOps Tools & Platforms 2022
- Differences Between MLOps, ModelOps, AIOps, DataOps
- MLOps to deploy Machine Learning Pipeline
- MLOps Tools, Best Practices and Case Studies
- Is Flutter a stable platform to develop cross platform application?
- Evaluating a string as a mathematical expression in JavaScript
- Evaluating a mathematical expression considering Operator Precedence in JavaScript
- The Importance of Evaluating the Performance of a Team
- HTML Navigator platform Property
- Limitations of using the Payback Period in evaluating an investment
- Evaluating New Projects with Weighted Average Cost of Capital (WACC)
