
- C++ Basics
- C++ Home
- C++ Overview
- C++ Environment Setup
- C++ Basic Syntax
- C++ Comments
- C++ Data Types
- C++ Variable Types
- C++ Variable Scope
- C++ Constants/Literals
- C++ Modifier Types
- C++ Storage Classes
- C++ Operators
- C++ Loop Types
- C++ Decision Making
- C++ Functions
- C++ Numbers
- C++ Arrays
- C++ Strings
- C++ Pointers
- C++ References
- C++ Date & Time
- C++ Basic Input/Output
- C++ Data Structures
- C++ Object Oriented
- C++ Classes & Objects
- C++ Inheritance
- C++ Overloading
- C++ Polymorphism
- C++ Abstraction
- C++ Encapsulation
- C++ Interfaces
C++ Program to Implement Booth’s Multiplication Algorithm for Multiplication of 2 signed Numbers
Booth’s algorithm is a multiplication algorithm that multiplies two signed binary numbers in 2’s compliment notation. Booth used desk calculators that were faster at shifting than adding and created the algorithm to increase their speed.
Algorithm
Begin Put multiplicand in BR and multiplier in QR and then the algorithm works as per the following conditions: 1. If Qn and Qn+1 are same i.e. 00 or 11 perform arithmetic shift by 1 bit. 2. If Qn Qn+1 = 10 do A= A + BR and perform arithmetic shift by 1 bit. 3. If Qn Qn+1 = 01 do A= A – BR and perform arithmetic shift by 1 bit. End
Example Code
#include<iostream> using namespace std; void add(int a[], int x[], int q); void complement(int a[], int n) { int i; int x[8] = { NULL }; x[0] = 1; for (i = 0; i < n; i++) { a[i] = (a[i] + 1) % 2; } add(a, x, n); } void add(int ac[], int x[], int q) { int i, c = 0; for (i = 0; i < q; i++) { ac[i] = ac[i] + x[i] + c; if (ac[i] > 1) { ac[i] = ac[i] % 2; c = 1; }else c = 0; } } void ashr(int ac[], int qr[], int &qn, int q) { int temp, i; temp = ac[0]; qn = qr[0]; cout << "\t\tashr\t\t"; for (i = 0; i < q - 1; i++) { ac[i] = ac[i + 1]; qr[i] = qr[i + 1]; } qr[q - 1] = temp; } void display(int ac[], int qr[], int qrn) { int i; for (i = qrn - 1; i >= 0; i--) cout << ac[i]; cout << " "; for (i = qrn - 1; i >= 0; i--) cout << qr[i]; } int main(int argc, char **argv) { int mt[10], br[10], qr[10], sc, ac[10] = { 0 }; int brn, qrn, i, qn, temp; cout << "\n--Enter the multiplicand and multipier in signed 2's complement form if negative--"; cout << "\n Number of multiplicand bit="; cin >> brn; cout << "\nmultiplicand="; for (i = brn - 1; i >= 0; i--) cin >> br[i]; //multiplicand for (i = brn - 1; i >= 0; i--) mt[i] = br[i]; complement(mt, brn); cout << "\nNo. of multiplier bit="; cin >> qrn; sc = qrn; cout << "Multiplier="; for (i = qrn - 1; i >= 0; i--) cin >> qr[i]; qn = 0; temp = 0; cout << "qn\tq[n+1]\t\tBR\t\tAC\tQR\t\tsc\n"; cout << "\t\t\tinitial\t\t"; display(ac, qr, qrn); cout << "\t\t" << sc << "\n"; while (sc != 0) { cout << qr[0] << "\t" << qn; if ((qn + qr[0]) == 1) { if (temp == 0) { add(ac, mt, qrn); cout << "\t\tsubtracting BR\t"; for (i = qrn - 1; i >= 0; i--) cout << ac[i]; temp = 1; } else if (temp == 1) { add(ac, br, qrn); cout << "\t\tadding BR\t"; for (i = qrn - 1; i >= 0; i--) cout << ac[i]; temp = 0; } cout << "\n\t"; ashr(ac, qr, qn, qrn); } else if (qn - qr[0] == 0) ashr(ac, qr, qn, qrn); display(ac, qr, qrn); cout << "\t"; sc--; cout << "\t" << sc << "\n"; } cout << "Result="; display(ac, qr, qrn); }
Output
--Enter the multiplicand and multipier in signed 2's complement form if negative-- Number of multiplicand bit=5 multiplicand=0 1 1 1 1 No. of multiplier bit=5 Multiplier=1 0 1 1 1 qn q[n+1] BR AC QR sc initial 00000 10111 5 1 0 subtracting BR 10001 ashr 11000 11011 4 1 1 ashr 11100 01101 3 1 1 ashr 11110 00110 2 0 1 adding BR 01101 ashr 00110 10011 1 1 0 subtracting BR 10111 ashr 11011 11001 0 Result=11011 11001
- Related Articles
- C++ Program to Implement the Schonhage-Strassen Algorithm for Multiplication of Two Numbers
- What is Booth Multiplication Algorithm in Computer Architecture?
- Algorithm for matrix multiplication in JavaScript
- Matrix multiplication algorithm
- C++ Program to Implement Russian Peasant Multiplication
- C++ program for multiplication of array elements
- Java program for Multiplication of Array elements.
- C Program for Matrix Chain Multiplication
- C program to implement Euclid’ s algorithm
- Explain the multiplication of decimal numbers.
- C program for Addition and Multiplication by 2 using Bitwise Operations.
- Explain Multiplication and Division of Rational numbers.
- C++ Program to Generate Multiplication Table
- C++ Program to Perform Matrix Multiplication
- Java Program to Generate Multiplication Table

Advertisements