
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 26504 Articles for Server Side Programming

565 Views
To filter few rows from DataFrame on the basis of sum, we have considered an example with Student Marks. We need to calculate the sum of a particular subject wherein the total is more than 200 i.e. the total of all 3 students in that particular subject is more than 200. In this way we can fiter our rows with total less than 200.At first, let us create a DataFrame with 3 columns i.e. records of 3 students −dataFrame = pd.DataFrame({'Jacob_Marks': [95, 90, 70, 85, 88], 'Ted_Marks': [60, 50, 65, 85, 70], 'Jamie_Marks': [77, 76, 60, 45, 50]})Filtering on the ... Read More

541 Views
To fetch the common rows between two DataFrames, use the concat() function. Let us create DataFrame1 with two columns −dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'], "Reg_Price": [1000, 1500, 1100, 800, 1100, 900] } )Create DataFrame2 with two columns −dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'], "Reg_Price": [1200, 1500, 1000, 800, 1100, 1000] } )Finding common rows between two DataFrames with concat() −dfRes = pd.concat([dataFrame1, dataFrame2])Reset index −dfRes = dfRes.reset_index(drop=True)Groupby columns −dfGroup = dfRes.groupby(list(dfRes.columns))Getting the length of each row to calculate the count. If ... Read More

744 Views
When it is required to convert a string into a matrix that has ‘K’ characters per row, a method is defined that takes a string and a value for ‘K’. It uses a simple iteration, the modulus operator and the ‘append’ method.ExampleBelow is a demonstration of the same −print("Method definition begins") def convert_my_string(my_string, my_k): for index in range(len(my_string)): if index % my_k == 0: sub = my_string[index:index+my_k] my_list = [] ... Read More

210 Views
To check if the DataFrame objects are equal, use the equals() method. At first, let us create DataFrame1 with two columns −dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } )Create DataFrame2 with two columns dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } )To check if the DataFrame ... Read More

331 Views
When it is required to convert a list of strings with a delimiter to a list of tuples, a K value is set, and list comprehension along with the ‘split’ method is used.ExampleBelow is a demonstration of the same −my_list = ["33-22", "13-44-81-39", "42-10-42", "36-56-90", "34-77-91"] print("The list is : " ) print(my_list) print("The sorted list is ") my_list.sort() print(my_list) K = "-" print("The value of K is ") print(K) my_result = [tuple(int(element) for element in sub.split(K)) for sub in my_list] print("The resultant list is : ") print(my_result)OutputThe list is : ['33-22', '13-44-81-39', '42-10-42', '36-56-90', '34-77-91'] ... Read More

4K+ Views
To group Pandas dataframe, we use groupby(). To sort grouped dataframe in descending order, use sort_values(). The size() method is used to get the dataframe size.For descending order sort, use the following in sort_values() −ascending=FalseAt first, create a pandas dataframe −dataFrame = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mercedes', 'Jaguar', 'Bentley'], "Reg_Price": [1000, 1400, 1000, 900, 1700, 900] } )Next, group according to Reg_Price column and sort in descending order −dataFrame.groupby('Reg_Price').size().sort_values(ascending=False) ExampleFollowing is the codeimport pandas as pd # dataframe with one of the columns as Reg_Price ... Read More

981 Views
When it is required to sort a given list of strings based on a numeric part of the string, a method is defined that uses the regular expressions, the ‘map’ method and the ‘list’ method to display the result.ExampleBelow is a demonstration of the same −import re print("The regular expression package has been imported successfully.") def my_digit_sort(my_list): return list(map(int, re.findall(r'\d+', my_list)))[0] my_list = ["pyt23hon", "fu30n", "lea14rn", 'co00l', 'ob8uje3345t'] print("The list is : " ) print(my_list) my_list.sort(key=my_digit_sort) print("The list has been sorted based on the pre-defined method..") print("The resultant list is : ") ... Read More

191 Views
When it is required to substitute prefix part of a list, the ‘len’ method and the ‘:’ operator is used.ExampleBelow is a demonstration of the same −my_list_1 = [15, 44, 82] my_list_2 = [29, 77, 19, 44, 26, 18] print("The first list is : " ) print(my_list_1) print("The second list is : " ) print(my_list_2) print("The first list after sorting is :") my_list_1.sort() print(my_list_1) print("The first list after sorting is :") my_list_2.sort() print(my_list_2) my_result = my_list_1 + my_list_2[len(my_list_1) : ] print("The resultant list is : ") print(my_result)OutputThe first list is : [15, 44, 82] ... Read More

603 Views
To merge dataframes of different length, we need to use the merge() method. Let’s say the following is our 1st DataFrame with length 4 −dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Jaguar'] } ) print("DataFrame1 ...", dataFrame1) print("DataFrame1 length = ", len(dataFrame1))Following is our 2nd DataFrame with length 6 −dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mercedes', 'Jaguar', 'Bentley'] } ) print("DataFrame2 ...", dataFrame2) print("DataFrame2 length = ", len(dataFrame2))Now, merge DataFrames using the merge() −mergedRes = dataFrame2.merge(dataFrame1, how='left')ExampleFollowing is the code −import pandas as pd # ... Read More

636 Views
When it is required to cross-map two dictionary valued lists, the ‘setdefault’ and ‘extend’ methods are used.ExampleBelow is a demonstration of the same −my_dict_1 = {"Python" : [4, 7], "Fun" : [8, 6]} my_dict_2 = {6 : [5, 7], 8 : [3, 6], 7 : [9, 8]} print("The first dictionary is : " ) print(my_dict_1) print("The second dictionary is : " ) print(my_dict_2) sorted(my_dict_1.items(), key=lambda e: e[1][1]) print("The first dictionary after sorting is ") print(my_dict_1) sorted(my_dict_2.items(), key=lambda e: e[1][1]) print("The second dictionary after sorting is ") print(my_dict_2) my_result = {} for key, value in my_dict_1.items(): ... Read More