Server Side Programming Articles - Page 665 of 2650

Mask an array inside a given interval in Numpy

AmitDiwan
Updated on 04-Feb-2022 11:05:20

522 Views

To mask an array inside a given interval, use the numpy.ma.masked_inside() method in Python Numpy. Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (v1

Return the default fill value for a masked array with float datatype in Numpy

AmitDiwan
Updated on 04-Feb-2022 10:59:51

171 Views

To return the default fill value for an array with float datatype, use the ma.default_fill_value() method in Python Numpy. The default filling value depends on the datatype of the input array or the type of the input scalar −datatypedefaultboolTrueint999999float1.e20complex1.e20+0jobject'?'string'N/A'For structured types, a structured scalar is returned, with each field the default fill value for its type. For subarray types, the fill value is an array of the same size containing the default scalar fill value.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an array with float elements using the numpy.array() method −arr = np.array([[72.7, ... Read More

Return the default fill value for the argument object in Numpy

AmitDiwan
Updated on 04-Feb-2022 10:56:03

150 Views

To return the default fill value for the argument object, use the ma.default_fill_value() method in Python Numpy. The default filling value depends on the datatype of the input array or the type of the input scalar −datatypedefaultboolTrueint999999float1.e20complex1.e20+0jobject'?'string'N/A'For structured types, a structured scalar is returned, with each field the default fill value for its type. For subarray types, the fill value is an array of the same size containing the default scalar fill value.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an array with int elements using the numpy.array() method −arr = np.array([[65, 68, 81], ... Read More

Mask array elements greater than a given value in Numpy

AmitDiwan
Updated on 04-Feb-2022 10:53:04

966 Views

To mask an array where greater than a given value, use the numpy.ma.masked_greater() method in Python Numpy. This function is a shortcut to masked_where, with condition = (x > value).A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an array with int elements using the numpy.array() method ... Read More

Mask array elements equal to a given value in Numpy

AmitDiwan
Updated on 04-Feb-2022 10:50:38

747 Views

To mask an array where equal to a given value, use the numpy.ma.masked_equal() method in Python Numpy. This function is a shortcut to masked_where, with condition = (x == value). For floating point arrays, consider using masked_values(x, value).A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an ... Read More

Return input with invalid data masked and replaced by a fill value in Numpy

AmitDiwan
Updated on 04-Feb-2022 10:45:49

167 Views

To return input with invalid data masked and replaced by a fill value, use the numpy.ma.fix_invalid() method in Python Numpy. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an array with int elements using the numpy.array() method −arr = np.array([[65, 68, 81], [93, 33, 39], [73, ... Read More

Convert the input to a masked array conserving subclasses in Numpy

AmitDiwan
Updated on 04-Feb-2022 10:41:28

189 Views

To convert the input to a masked array conserving subclasses, use the numpy.ma.asanyarray() method in Python Numpy. The function returns the MaskedArray interpretation of the input.If the input is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already an ndarray. The first parameter is the input data, in any form that can be converted to an array. The order parameter suggests whether to use row-major ('C') or column-major ('FORTRAN') memory representation. Default is 'C'.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an array with int elements ... Read More

Convert the input to a masked array of the given data-type in Numpy

AmitDiwan
Updated on 04-Feb-2022 10:35:17

923 Views

To convert the input to a masked array of the given data-type, use the numpy.ma.asarray() method in Python Numpy. No copy is performed if the input is already an ndarray. If the input data is a subclass of MaskedArray, a base class MaskedArray is returned.The first parameter is the input data, in any form that can be converted to a masked array. The functions returns the Masked array interpretation of the first parameter. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays. The order parameter suggests whether to use row-major ('C') or ... Read More

Reduce a mask to nomask when possible in Numpy

AmitDiwan
Updated on 04-Feb-2022 10:31:32

160 Views

To reduce a mask to nomask when possible, use the np.ma.shrink_mask() method in Numpy. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.StepsAt first, import the ... Read More

Mask rows and/or columns of a 2D array that contain masked values in Numpy

AmitDiwan
Updated on 04-Feb-2022 10:26:39

3K+ Views

To mask rows and/or columns of a 2D array that contain masked values, use the np.ma.mask_rowcols() method in Numpy. The function returns a modified version of the input array, masked depending on the value of the axis parameter.Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axis parameter −If axis is None, rows and columns are masked.If axis is 0, only rows are masked.If axis is 1 or -1, only columns are masked.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an array with ... Read More

Advertisements