Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Convert the input to a masked array conserving subclasses in Numpy
To convert the input to a masked array conserving subclasses, use the numpy.ma.asanyarray() method in Python Numpy. The function returns the MaskedArray interpretation of the input.
If the input is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already an ndarray. The first parameter is the input data, in any form that can be converted to an array. The order parameter suggests whether to use row-major ('C') or column-major ('FORTRAN') memory representation. Default is 'C'.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Array −
print("
Our Masked Array Dimensions...
",arr.ndim)
Get the shape of the Array −
print("
Our Masked Array Shape...
",arr.shape)
Get the number of elements of the Array −
print("
Elements in the Masked Array...
",arr.size)
To convert the input to a masked array conserving subclasses, use the numpy.ma.asanyarray() method −
print("
Masked Array...
",np.ma.asanyarray(arr))
Check the type −
print("
Type...
",type(np.ma.asanyarray(arr)))
Example
import numpy as np
import numpy.ma as ma
# Create an array with int elements using the numpy.array() method
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr.ndim)
# Create a masked array and mask some of them as invalid
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)
# Get the dimensions of the Array
print("
Our Masked Array Dimensions...
",arr.ndim)
# Get the shape of the Array
print("
Our Masked Array Shape...
",arr.shape)
# Get the number of elements of the Array
print("
Elements in the Masked Array...
",arr.size)
# To convert the input to a masked array conserving subclasses, use the numpy.ma.asanyarray() method in Python Numpy
print("
Masked Array...
",np.ma.asanyarray(arr))
# Check the type
print("
Type...
",type(np.ma.asanyarray(arr)))
Output
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [93 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Masked Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Type... <class 'numpy.ma.core.MaskedArray'>