
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 26504 Articles for Server Side Programming

157 Views
To generate a pseudo Vandermonde matrix of the Laguerre polynomial with x, y, z sample points, use the laguerre.lagvander3d() in Python Numpy. The parameter, x, y, z returns an Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is converted to a 1-D array. The parameter, deg is a list of maximum degrees of the form [x_deg, y_deg, z_deg].StepsAt first, import the required library −import numpy as np from numpy.polynomial import laguerre as LCreate arrays of point coordinates, all of the same shape using ... Read More

131 Views
To evaluate a Legendre series at points x, use the polynomial.legendre.legval() method in Python Numpy. The 1st parameter is x. If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and treated as a scalar. In either case, x or its elements must support addition and multiplication with themselves and with the elements of c.The 2nd parameter, C, an array of coefficients ordered so that the coefficients for terms of degree n are contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials. In the two dimensional case the ... Read More

135 Views
To evaluate a Legendre series at points x, use the polynomial.legendre.legval() method in Python Numpy. The 1st parameter is x. If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and treated as a scalar. In either case, x or its elements must support addition and multiplication with themselves and with the elements of c.The 2nd parameter, C, an array of coefficients ordered so that the coefficients for terms of degree n are contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials. In the two dimensional case the ... Read More

157 Views
To differentiate a Hermite series, use the hermite.hermder() method in Python. The 1st parameter, c is an array of Hermite series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. The 2nd parameter, m is the number of derivatives taken, must be non-negative. (Default: 1)The 3rd parameter, scl is a scalar. Each differentiation is multiplied by scl. The end result is multiplication by scl**m. This is for use in a linear change of variable. (Default: 1). The 4th parameter, axis is an Axis over which the ... Read More

321 Views
Suppose, we are given a grid of dimensions h * w that contains two types of cells, blocked and unblocked. Blocked cells mean that the cells aren't accessible and unblocked means that the cells are accessible. We represent the grid in a 2D array where the blocked cells are given as '#' and the unblocked cells are given as '.'. Now, we have to reach from an unblocked cell to another unblocked cell in the grid. We can perform only two moves, we can either go vertical or we can go horizontal. We can't move diagonally. We have to keep ... Read More

165 Views
To differentiate a Hermite series, use the hermite.hermder() method in Python. The 1st parameter, c is an array of Hermite series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. The 2nd parameter, m is the number of derivatives taken, must be non-negative. (Default: 1)The 3rd parameter, scl is a scalar. Each differentiation is multiplied by scl. The end result is multiplication by scl**m. This is for use in a linear change of variable. (Default: 1). The 4th parameter, axis is an Axis over which the ... Read More

198 Views
To differentiate a Hermite series, use the hermite.hermder() method in Python. The 1st parameter, c is an array of Hermite series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. The 2nd parameter, m is the number of derivatives taken, must be non-negative. (Default: 1) The 3rd parameter, scl is a scalar. Each differentiation is multiplied by scl. The end result is multiplication by scl**m. This is for use in a linear change of variable. (Default: 1). The 4th parameter, axis is an Axis over which ... Read More

125 Views
To evaluate a 3-D Hermite series on the Cartesian product of x, y and z, use the hermite.hermgrid3d(x, y, z, c) method in Python. The method returns the values of the two dimensional polynomial at points in the Cartesian product of x, y and z.The parameters are x, y, z. The three dimensional series is evaluated at the points in the Cartesian product of x, y, and z. If x, `y`, or z is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as ... Read More

125 Views
To evaluate a 3-D Hermite series on the Cartesian product of x, y and z, use the hermite.hermgrid3d(x, y, z, c) method in Python. The method returns the values of the two dimensional polynomial at points in the Cartesian product of x, y and z.The parameters are x, y, z. The three dimensional series is evaluated at the points in the Cartesian product of x, y, and z. If x, `y`, or z is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as ... Read More

134 Views
To evaluate a 3-D Hermite series on the Cartesian product of x, y and z, use the hermite.hermgrid3d(x, y, z, c) method in Python. The method returns the values of the three dimensional polynomial at points in the Cartesian product of x, y and z.The parameters are x, y, z. The three dimensional series is evaluated at the points in the Cartesian product of x, y, and z. If x, `y`, or z is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as ... Read More