Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Server Side Programming Articles - Page 1723 of 2646
4K+ Views
There is no function in base R to simulate discrete uniform random variable like we have for other random variables such as Normal, Poisson, Exponential etc. but we can simulate it using rdunif function of purrr package.The rdunif function has the following syntax −> rdunif(n, b , a)Here, n = Number of random values to returnb = Maximum value of the distribution, it needs to be an integer because the distribution is discretea = Minimum value of the distribution, it needs to be an integer because the distribution is discreteExampleLet’s say you want to simulate 10 ages between 21 to ... Read More
281 Views
This can be done by using scale function.Example> data data x y 1 49.57542 2.940931 2 49.51565 2.264866 3 50.70819 2.918803 4 49.09796 2.416676 5 49.90089 2.349696 6 49.03445 3.883145 7 51.29564 4.072614 8 49.11014 3.526852 9 49.41255 3.320530 10 49.42131 3.033730 > standardized_data standardized_data x y [1,] -0.1774447 -0.20927607 [2,] -0.2579076 -1.28232321 [3,] 1.3476023 -0.24439768 [4,] -0.8202493 -1.04137095 [5,] 0.2607412 -1.14768085 [6,] -0.9057468 1.28619932 [7,] 2.1384776 1.58692277 [8,] -0.8038439 0.72069363 [9,] -0.3967165 0.39321942 [10,] -0.3849124 -0.06198639 attr(,"scaled:center") x y 49.707220 3.072784 attr(,"scaled:scale") x y 0.7427788 0.6300430
3K+ Views
We can use rm remove all or few objects.Example< x>-rnorm(100,0.5) < y>-1:100 < z>-rpois(100,5) < a>-rep(1:5,20)To remove all objects> rm(list=ls()) ls() character(0)To remove all except a> rm(list=setdiff(ls(), "a")) > ls() [1] "a"To remove all except x and a> rm(list=ls()[! ls() %in% c("x","a")]) ls() [1] "a" "x"
466 Views
This can be done by using square brackets.Example> data data X1 X2 X3 X4 X5 1 4.371434 6.631030 5.585681 3.951680 5.174490 2 4.735757 4.376903 4.100580 4.512687 4.085132 3 4.656816 5.326476 6.188766 4.824059 5.401279 4 3.487443 4.253042 5.277751 6.121441 4.925158 5 5.174943 3.704238 5.813336 5.224412 4.990136 6 3.461819 5.102038 6.094579 5.536754 6.311731 7 4.772712 6.445479 5.254032 4.430560 7.183776 8 5.366510 5.232044 5.422526 3.746559 4.810256 9 4.786759 4.665812 4.634238 6.511210 4.959757 10 6.731195 5.083179 4.969842 4.976357 4.939117Let’s say we want to remove rows 4, 7, and 9. We will do it as follows −> data data X1 X2 X3 X4 X5 1 4.371434 6.631030 5.585681 3.951680 5.174490 2 4.735757 4.376903 4.100580 4.512687 4.085132 3 4.656816 5.326476 6.188766 4.824059 5.401279 5 5.174943 3.704238 5.813336 5.224412 4.990136 6 3.461819 5.102038 6.094579 5.536754 6.311731 8 5.366510 5.232044 5.422526 3.746559 4.810256 10 6.731195 5.083179 4.969842 4.976357 4.939117
351 Views
This can be done with the help of seq_along, split, and ceiling.Example> x x [1] 6 5 6 3 11 4 5 6 7 4 6 4 3 4 7 1 8 4 2 4 5 7 8 5 9 [26] 3 5 5 5 1 7 5 8 1 8 3 8 4 5 7 5 8 4 4 2 5 6 3 9 4 [51] 6 3 3 2 5 6 5 4 5 5 2 3 3 12 11 6 4 5 6 7 5 2 2 5 8 [76] 3 8 8 7 3 7 6 6 4 1 6 8 3 6 6 6 6 4 8 6 4 5 4 2 5 > max y chunks chunks $`1` [1] 6 5 6 3 11 4 5 6 7 4 6 4 3 4 7 1 8 4 2 4 $`2` [1] 5 7 8 5 9 3 5 5 5 1 7 5 8 1 8 3 8 4 5 7 $`3` [1] 5 8 4 4 2 5 6 3 9 4 6 3 3 2 5 6 5 4 5 5 $`4` [1] 2 3 3 12 11 6 4 5 6 7 5 2 2 5 8 3 8 8 7 3 $`5` [1] 7 6 6 4 1 6 8 3 6 6 6 6 4 8 6 4 5 4 2 5
496 Views
This can be done with the help of tidyr package.Example> library(tidyr) > data = data.frame(attr = c(1,5,12,17), type=c('class_and_memory','class_and_memory_2')) > data %>% + separate(type, c("class", "memory"), "_and_") attr class memory 1 1 class memory 2 5 class memory_2 3 12 class memory 4 17 class memory_2
179 Views
This can be done by using reshape function.Example> data dataname salarygroup Errors1 firstName 1 58 2 firstName 2 50 3 firstName 3 47 4 firstName 4 29 5 firstName 5 36 6 LastName 1 34 7 LastName 2 40 8 LastName 3 54 9 LastName 4 38 10 LastName 5 41 > reshape(data, idvar = "name", timevar = "salarygroup", direction = "wide")name Errors.1 Errors.2 Errors.3 Errors.4 Errors.51 firstName 58 50 47 29 36 6 LastName 34 40 54 38 41