
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 10476 Articles for Python

1K+ Views
In this program, we will calculate the standard deviation of all the pixels in each channel using the Pillow library. There are total 3 channels in an image and therefore we will get a list of three values.Original ImageAlgorithmStep 1: Import Image and ImageStat libraries. Step 2: Open the image. Step 3: Pass the image to the stat function of the imagestat class. Step 4: Print the standard deviation of the pixels.Example Codefrom PIL import Image, ImageStat im = Image.open('image_test.jpg') stat = ImageStat.Stat(im) print(stat.stddev)Output[72.25694839223894, 66.24724750077299, 65.50769196475312]

302 Views
In this program, we will blur an image using a rank filter. The ImageFilter class in the pillow library contains a function called RankFilter() which helps to apply the rank filter. It takes two parameters, size of the kernel and rank. Rank is 0 for a min filter, size*size/2 for a median filter and size*size-1 for a max filter.Original ImageAlgorithmStep 1: Import Image and ImageFilter from Pillow. Step 2: Open the image. Step 3: Call the rankfilter() method and specify the size and rank. Step 4: Display the output.Example Codefrom PIL import Image, ImageFilter im = Image.open('image_test.jpg') im1 = ... Read More

421 Views
In this program, we will blur an image using a Box filter. The ImageFilter class in the pillow library contains a function called BoxBlur() which helps to apply the box blur filter. It takes only one parameter that is blur radius.Original ImageAlgorithmStep 1: Import Image and ImageFilter from Pillow. Step 2: Open the image. Step 3: Call the boxblur() method and specify the radius. Step 4: Display the output.Example Codefrom PIL import Image, ImageFilter im = Image.open('image_test.jpg') im1 = im.filter(ImageFilter.BoxBlur(radius = 7)) im1.show()Output

925 Views
In this program, we will blur an image using a Gaussian filter. The ImageFilter class in the pillow library contains a function called GaussianBlur() which helps to apply the gaussian blur filter. It takes only one parameter that is blur radius.Original ImageAlgorithmStep 1: Import Image and ImageFilter from Pillow. Step 2: Open the image. Step 3: Call the gaussianblur() method and specify the radius Step 4: Display the output.Example Codefrom PIL import Image, ImageFilter im = Image.open('image_test.jpg') im1 = im.filter(ImageFilter.GaussianBlur(radius = 9)) im1.show()Output

997 Views
In this program, we will apply a minimum filter on an image using the pillow library. In median filtering, the value of each pixel in a selected window of the image is replaced by the median of that window. The filter function is used to apply different filters using the pillow library.Original ImageAlgorithmStep 1: Import Image from Pillow. Step 2: Open the image. Step 3: Call the filter function and specify the median filter. Step 4: Display the output.Example Codefrom PIL import Image, ImageFilter im = Image.open('testimage.jpg') im1 = im.filter(ImageFilter.MedianFilter(size = 7)) im1.show()Output

272 Views
In this program, we will apply a minimum filter on an image using the pillow library. In mode filtering, the value of each pixel in a selected window of the image is replaced by the mode of that window. The filter function is used to apply different filters using the pillow library.Original ImageAlgorithmStep 1: Import Image from Pillow. Step 2: Open the image. Step 3: Call the filter function and specify modefilter. Step 4: Display the output.Example Codefrom PIL import Image, ImageFilter im = Image.open('testimage.jpg') im1 = im.filter(ImageFilter.ModeFilter(size = 7)) im1.show()Output

498 Views
In this program, we will apply a minimum filter on an image using the pillow library. In maximum filtering, the value of each pixel in a selected window of the image is replaced by the maximum pixel of that window. The filter function is used to apply different filters using the pillow library.Original ImageAlgorithmStep 1: Import Image from Pillow. Step 2: Open the image. Step 3: Call the filter function and specify maxfilter. Step 4: Display the output.Example Codefrom PIL import Image, ImageFilter im = Image.open('testimage.jpg') im1 = im.filter(ImageFilter.MaxFilter(size = 7)) im1.show()Output

293 Views
In this program, we will apply a minimum filter on an image using the pillow library. In minimum filtering, the value of each pixel in a selected window of the image is replaced by the minimum pixel of that window. The filter function is used to apply different filters using the pillow library.Original ImageAlgorithmStep 1: Import Image from Pillow. Step 2: Open the image. Step 3: Call the filter function and specify minfilter. Step 4: Display the output.Example Codefrom PIL import Image, ImageFilter im = Image.open('testimage.jpg') im1 = im.filter(ImageFilter.MinFilter(size = 7)) im1.show()Output

826 Views
In this program, we will rotate an image using the pillow library. The rotate() function in the Image class takes in angle of rotation.Original ImageAlgorithmStep1: Import Image class from Pillow. Step 2: Open the image. Step 3: Rotate the image. Step 4: Display the output.Example Codefrom PIL import Image im = Image.open('testimage.jpg') im.rotate(45).show()Output

286 Views
In this program, we will crop an image using the Pillow library. We will use the crop() function for the same. The function takes left, top, right, bottom pixel coordinates to crop the image.Original ImageAlgorithmStep 1: Import Image from Pillow. Step 2: Read the image. Step 3: Crop the image using the crop function. Step 4: Display the output.Example Codefrom PIL import Image im = Image.open('testimage.jpg') width, height = im.size left = 5 top = height / 2 right = 164 bottom = 3 * height / 2 im1 = im.crop((left, top, right, bottom)) im1.show()Output