Found 10476 Articles for Python

Python – Group and calculate the sum of column values of a Pandas DataFrame

AmitDiwan
Updated on 16-Sep-2021 07:19:05

2K+ Views

We will consider an example of Car Sale Records and group month-wise to calculate the sum of Registration Price of car monthly. To sum, we use the sum() method.At first, let’s say the following is our Pandas DataFrame with three columns −dataFrame = pd.DataFrame(    {       "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [ pd.Timestamp("2021-06-10"), pd.Timestamp("2021-07-11"), pd.Timestamp("2021-06-25"), ... Read More

What are the challenges faced by transport layer protocol?

Bhanu Priya
Updated on 16-Sep-2021 07:12:37

7K+ Views

In the OSI (Open System Interconnection) model, the transport layer is one of the seven layers and it is responsible for the end to end communication between the sender and receiver over the internet. It provides logical communication between the sender and receiver and ensures the end to end delivery of the packet.The transport layer main protocols are as follows −TCP (Transmission Control Protocol)UDP (User Datagram Protocol)SCTP (Stream Control Transmission Protocol)RDP (Reliable Data Protocol)RUDP (Reliable User Datagram Protocol)Responsibilities of the transport layerThe responsibilities of the transport layer are as follows −It provides a process to process delivery or end to ... Read More

Python Pandas - Generate dates in a range

AmitDiwan
Updated on 16-Sep-2021 07:05:45

785 Views

To generate dates in a range, use the date _range() method. At first, import the required pandas library with an alias −import pandas as pdNow, let’s say you need to generate dates in arrange, therefore for this, mention the date from where you want to begin. Here, we have mentioned 1st June 2021 and period of 60 days −dates = pd.date_range('6/1/2021', periods=60) ExampleFollowing is the complete code − import pandas as pd # generate dates in a range # period is 60 i.e. 60 days from 1st June 2021 dates = pd.date_range('6/1/2021', periods=60) print"Displaying dates in a range...", ... Read More

Python Pandas - Convert string data into datetime type

AmitDiwan
Updated on 16-Sep-2021 06:59:02

387 Views

To convert string data to actual dates i.e. datetime type, use the to_datetime() method. At first, let us create a DataFrame with 3 categories, one of the them is a date string −dataFrame = pd.DataFrame({ 'Product Category': ['Computer', 'Mobile Phone', 'Electronics', 'Stationery'], 'Product Name': ['Keyboard', 'Charger', 'SmartTV', 'Chairs'], 'Date_of_Purchase': ['10/07/2021', '20/04/2021', '25/06/2021', '15/02/2021'], }) Convert date strings to actual dates using to_datetime() −dataFrame['Date_of_Purchase'] = pd.to_datetime(dataFrame['Date_of_Purchase'])ExampleFollowing is the complete code −import pandas as pd # create a dataframe dataFrame = pd.DataFrame({ 'Product Category': ['Computer', 'Mobile Phone', 'Electronics', 'Stationery'], 'Product Name': ['Keyboard', 'Charger', 'SmartTV', ... Read More

Python - Compute last of group values in a Pandas DataFrame

AmitDiwan
Updated on 16-Sep-2021 06:48:58

159 Views

To compute last of group values, use the groupby.last() method. At first, import the required library with an alias −import pandas as pd;Create a DataFrame with 3 columns −dataFrame = pd.DataFrame(    {       "Car": ['BMW', 'Lexus', 'BMW', 'Tesla', 'Lexus', 'Tesla'], "Place": ['Delhi', 'Bangalore', 'Pune', 'Punjab', 'Chandigarh', 'Mumbai'], "Units": [100, 150, 50, 80, 110, 90]    } ) Now, group DataFrame by a column −groupDF = dataFrame.groupby("Car")Compute last of group values and resetting index −res = groupDF.last() res = res.reset_index()ExampleFollowing is the complete code. The last occurrence of repeated values are displayed i.e. last of group values ... Read More

Python Pandas - Filtering columns from a DataFrame on the basis of sum

AmitDiwan
Updated on 16-Sep-2021 06:40:49

873 Views

To filter on the basis of sum of columns, we use the loc() method. Here, in our example, we sum the marks of each student to get the student column with marks above 400 i.e. 80%.At first, create a DataFrame with student records. We have marks records of 3 students i.e 3 columns −dataFrame = pd.DataFrame({ 'Jacob_Marks': [95, 90, 75, 85, 88], 'Ted_Marks': [60, 50, 65, 85, 70], 'Jamie_Marks': [77, 76, 65, 45, 50]}) Filtering on the basis of columns. Fetching student with total marks above 400 −dataFrame = dataFrame.loc[:, dataFrame.sum(axis=0) > 400]ExampleFollowing is the complete ... Read More

Python Pandas - Select first periods of time series data based on a date offset

AmitDiwan
Updated on 16-Sep-2021 06:34:11

199 Views

To select first periods of time series based on a date offset, use the first() method. At first, set the date index with periods and freq parameters. Freq is for frequency −i = pd.date_range('2021-07-15', periods=5, freq='3D')Now, create a DataFrame with above index −dataFrame = pd.DataFrame({'k': [1, 2, 3, 4, 5]}, index=i) Fetch rows from first 4 days i.e. 4D −dataFrame.first('4D')ExampleFollowing is the complete code − import pandas as pd # date index set with 5 periods and frequency of 3 days i = pd.date_range('2021-07-15', periods=5, freq='3D') # creating DataFrame with above index dataFrame = pd.DataFrame({'k': [1, 2, 3, ... Read More

Python Pandas - Merge DataFrame with indicator value

AmitDiwan
Updated on 15-Sep-2021 13:40:28

5K+ Views

To merge Pandas DataFrame, use the merge() function. In that, you can set the parameter indicator to True or False. If you want to check which dataframe has a specific record, then use −indicator= TrueAs shown above, using above parameter as True, adds a column to the output DataFrame called “_merge”.At first, let us import the pandas library with an alias −import pandas as pd Let us create DataFrame1 −dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, ... Read More

Python - Calculate the standard deviation of a column in a Pandas DataFrame

AmitDiwan
Updated on 15-Sep-2021 13:33:16

791 Views

To calculate the standard deviation, use the std() method of the Pandas. At first, import the required Pandas library −import pandas as pdNow, create a DataFrame with two columns −dataFrame1 = pd.DataFrame(    {       "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'],       "Units": [100, 150, 110, 80, 110, 90] } ) Finding the standard deviation of “Units” column value using std() −print"Standard Deviation of Units column from DataFrame1 = ", dataFrame1['Units'].std()In the same way, we have calculated the standard deviation from the 2nd DataFrame.ExampleFollowing is the complete code −# # Python - Calculate the ... Read More

Python Pandas - Select final periods of time series data based on a date offset

AmitDiwan
Updated on 15-Sep-2021 13:17:10

196 Views

To select final periods of time series based on a date offset, use the last() method. At first, set the date index with periods and freq. Freq is for frequency −i = pd.date_range('2021-07-15', periods=5, freq='3D')Now, create a DataFrame with above index −dataFrame = pd.DataFrame({'k': [1, 2, 3, 4, 5]}, index=i) Fetch rows from last 4 days i.e. 4D −dataFrame.last('4D')ExampleFollowing is the complete code −import pandas as pd # date index set with 5 periods and frequency of 3 days i = pd.date_range('2021-07-15', periods=5, freq='3D') # creating DataFrame with above index dataFrame = pd.DataFrame({'k': [1, 2, 3, 4, 5]}, ... Read More

Advertisements