 
 Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Python Articles - Page 289 of 1048
 
 
			
			594 Views
To get the Outer product of two multi-dimensional arrays, use the numpy.outer() method in Python. The 1st parameter a is the first input vector. Input is flattened if not already 1-dimensional. The 2nd parameter b is the second input vector. Input is flattened if not already 1-dimensional. The 3rd parameter out is a location where the result is stored.Given two vectors, a = [a0, a1, ..., aM] and b = [b0, b1, ..., bN], the outer product [1] is −[[a0*b0 a0*b1 ... a0*bN ] [a1*b0 . [ ... . [aM*b0 aM*bN ]]StepsAt first, import the required libraries ... Read More
 
 
			
			234 Views
To Compute the sign and natural logarithm of the determinant of an array, use the numpy.linalg.slogdet() method in Python. The 1st parameter, s is an input array, has to be a square 2-D array.The method, with sign returns a number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1, or else 0. The method, with logdet returns the natural log of the absolute value of the determinant. If the determinant is zero, then sign will be 0 and logdet will ... Read More
 
 
			
			180 Views
To return the cumulative product of array elements over a given axis treating NaNs as one, use the nancumprod() method. The cumulative product does not change when NaNs are encountered and leading NaNs are replaced by ones. Ones are returned for slices that are all-NaN or empty.The method returns a new array holding the result is returned unless out is specified, in which case it is returned. Cumulative works like, 5, 5*10, 5*10*15, 5*10*15*20. The 1st parameter is the input array. The 2nd parameter is the Axis along which the cumulative product is computed. By default the input is flattened.The ... Read More
 
 
			
			173 Views
To return the cumulative product of array elements over a given axis treating NaNs as one, use the nancumprod() method. The cumulative product does not change when NaNs are encountered and leading NaNs are replaced by ones. Ones are returned for slices that are all-NaN or empty. The method returns a new array holding the result is returned unless out is specified, in which case it is returned.Cumulative works like, 5, 5*10, 5*10*15, 5*10*15*20. The 1st parameter is the input array. The 2nd parameter is the Axis along which the cumulative product is computed. By default the input is flattened. ... Read More
 
 
			
			166 Views
To integrate a Laguerre series, use the laguerre.lagint() method in Python. The method returns the Laguerre series coefficients c integrated m times from lbnd along axis. At each iteration the resulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change of variable.The 1st parameter, c is an array of Laguerre series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. The 2nd parameter, m is an order of integration, must be positive. (Default: ... Read More
 
 
			
			212 Views
To generate a Chebyshev series with given roots, use the chebyshev.chebfromroots() method in Python Numpy. The method returns 1-D array of coefficients. If all roots are real then out is a real array, if some of the roots are complex, then out is complex even if all the coefficients in the result are real. The parameter roots are the sequence containing the roots.StepsAt first, import the required library −import numpy as np from numpy.polynomial import chebyshev as CTo generate a Chebyshev series with given roots, use the chebyshev.chebfromroots() method in Python Numpy −print("Result...", C.chebfromroots((-1, 0, 1)))Get the datatype −print("Type...", C.chebfromroots((-1, ... Read More
 
 
			
			147 Views
To Integrate a Chebyshev series, use the chebyshev.chebint() method in Python. Returns the Chebyshev series coefficients c integrated m times from lbnd along axis. At each iteration the resulting series is multiplied by scl and an integration constant, k, is added. The 1st parameter, c is an array of Chebyshev series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index.The 2nd parameter, m is an order of integration, must be positive. (Default: 1). The 3rd parameter, k is an Integration constant(s). The value of the first ... Read More
 
 
			
			149 Views
To evaluate a Laguerre series at points x, use the polynomial.laguerre.lagval() method in Python Numpy. The 1st parameter is x. If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and treated as a scalar. In either case, x or its elements must support addition and multiplication with themselves and with the elements of c.The 2nd parameter, C, an array of coefficients ordered so that the coefficients for terms of degree n are contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials. In the two dimensional case the ... Read More
 
 
			
			182 Views
To evaluate a Laguerre series at points x, use the polynomial.laguerre.lagval() method in Python Numpy. The 1st parameter is x. If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and treated as a scalar. In either case, x or its elements must support addition and multiplication with themselves and with the elements of c.The 2nd parameter, C, an array of coefficients ordered so that the coefficients for terms of degree n are contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials. In the two dimensional case the ... Read More
 
 
			
			132 Views
To evaluate a Laguerre series at points x, use the polynomial.laguerre.lagval() method in Python Numpy. The 1st parameter is x. If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and treated as a scalar. In either case, x or its elements must support addition and multiplication with themselves and with the elements of c.The 2nd parameter, C, an array of coefficients ordered so that the coefficients for terms of degree n are contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials. In the two dimensional case the ... Read More