Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Programming Articles - Page 1251 of 3363
1K+ Views
To create a stacked lines graph with Python, we can take the following Steps −Create x, y, y1 and y2 points using numpy.Plot the lines using numpy with the above data (Step 1) and labels mentioned.Fill the color between curve y=e^x and y=0, using the fill_between() method.Fill the color between curve y=2x and y=0, using the fill_between() method.Fill the color between curve y=log(x) and y=0, using fill_between() method.Place the curve text using the legend() method.To display the figure, use the show() method.Exampleimport matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(1, 5, 100) y = x * 2 y1 = np.log(x) ... Read More
2K+ Views
It seems difficult to change the projection of an existing axis, but we can take the following steps to create different type projections −Using subplot() method, add a subplot to the current figure, with nrows=1, ncols=3 and current index=1.Add a title to the current axis.Using subplot() method, add a subplot to the current figure, with nrows=1, ncols=3 and current index=2, projection=hammer.Add a title to current axis, hammer.Using subplot() method, add a subplot to the current figure, with nrows=1, ncols=3 and current index=3, projection=polar.Add a title to current axis, polar.To display the figure, use the show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = ... Read More
2K+ Views
Whenever plots are saved in .eps/.ps, then the transparency of the plots get lost.To compare them, we can take the following Steps −Create x_data and y_data using numpy.Plot x_data and y_data (Step 1), using the plot() method, with less aplha value, to make it more transparent.Use the grid() method to prove the transparency of the line.Save the created plot in .eps format.To display the figure, use the show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x_data = np.linspace(1, 10, 100) y_data = np.sin(x_data) plt.plot(x_data, y_data, c='green', marker='o', alpha=.35, ms=10, lw=1) plt.grid() plt.savefig("lost_transparency_img.eps") plt.show()OutputThe PostScript backend ... Read More
9K+ Views
To plot a gradient color line in matplotlib, we can take the following steps −Create x, y and c data points, using numpy.Create scatter points over the axes (closely so as to get a line), using the scatter() method with c and marker='_'.To display the figure, use the show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(-1, 1, 1000) y = np.exp(x) c = np.tan(x) plt.scatter(x, y, c=c, marker='_') plt.show()Output
12K+ Views
To put some superscript in Python, we can take the following steps −Create points for a and f using numpy.Plot f = ma curve using the plot() method, with label f=ma.Add title for the plot with superscript, i.e., kgms-2.Add xlabel for the plot with superscript, i.e., ms-2.Add ylabel for the plot with superscript, i.e., kg.To place the legend, use legend() method.To display the figure, use the show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True a = np.linspace(1, 10, 100) m = 20 f = m*a plt.plot(a, f, c="red", lw=5, label="f=ma") plt.title("Force $\mathregular{kgms^{-2}}$") plt.xlabel("Acceleration $\mathregular{ms^{-2}}$") plt.ylabel("Acceleration $\mathregular{kg}$") ... Read More
29K+ Views
To add legends in a subplot, we can take the following Steps −Using numpy, create points for x, y1, y2 and y3.Create a figure and a set of subplots, using the subplots() method, considering 3 subplots.Plot the curve on all the subplots(3), with different labels, colors. To place the legend for each curve or subplot adding label.To activate label for each curve, use the legend() method.To display the figure, use the show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(-2, 2, 100) y1 = np.sin(x) y2 = np.cos(x) y3 ... Read More
5K+ Views
To plot interactive matplotlib’s imshow window, we can take the following steps −Using the subplots() method, create a figure and a set of subplots.Create an array to plot an image, using numpy.Display the image using the imshow() method.To make a slider axis, create an axes and a slider, with facecolor=yellow.To update the image, while changing the slider, we can write a user-defined method, i.e., update(). Using the draw_idle() method, request a widget redraw once the control returns to the GUI event loop.To display the figure, use the show() method.Exampleimport numpy as np from matplotlib import pyplot as plt from matplotlib.widgets import Slider ... Read More
283 Views
To differentiate antialiasing through curves, we can take the following Steps −Add a subplot to the current figure, using the subplot() method, where nrows=1, ncols=2 and index=1.Plot the curve using the plot() method, where antialiased flag is false and color is red.Place the legend at the upper-left corner using the legend() method.Add a subplot to the current figure, using the subplot() method, where nrows=1, ncols=2 and index=2.Plot the curve using the plot() method, where antialiased flag is true and color is green.Place the legend at the upper-right corner using the legend() method.To display the figure, use the show() method.Exampleimport numpy as np from matplotlib import pyplot as plt ... Read More
4K+ Views
To get the legend as a separate picture, we can take the following steps −Create x and y points using numpy.Using the figure() method, create a new figure, or activate an existing figure for Line plot and Legend plot figures.Add an '~.axes.Axes' to the figure as part of a subplot arrangement, using the add_subplot() method at nrow=1, ncols=1 and at index=1.Create line1 and line2 using x, y and y1 points.Place the legend for line1 and line2, set ordered labels, put at center location.Save the figure only with legend using the savefig() method.Exampleimport numpy as np from matplotlib import pyplot as plt x = np.linspace(1, 100, ... Read More
4K+ Views
To plot logarithmic Y-axis bins in Python, we can take the following steps −Create x and y points using numpy.Set the Y-axis scale using the yscale() method.Plot the x and y points, using the plot() method with linestyle="dashdot" and label="y=log(x)".To activate the label of the line, use the legend() method.To display the figure, use the show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(1, 100, 1000) y = np.log(x) plt.yscale('log') plt.plot(x, y, c="red", lw=3, linestyle="dashdot", label="y=log(x)") plt.legend() plt.show()OutputRead More